

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	1 de 97

NORMA TÉCNICA DE DISTRIBUIÇÃO NTD - 013

Transformadores para Redes Aéreas de Distribuição - Classes 15 e 36,2 kV

Especificação e Padronização

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	2 de 97

Controle de Revisão				
Versão	Motivo da Revisão/Alteração Data de Vigência Situa		Situação	
1.00	Versão aprovada para implantação		01/10/2015	Obsoleta
2	Revisão Geral conforme PAC 001/2022-DT Seq. 3		01/10/2022	Atual
Pha	LABORADO POR: blo Sullyvan Gomides ngenheiro Eletricista	REVISADO POR: Glauber Jose Firmo Gerente Departamento Técnico	APROVADO I Rauflin Gonçalves Diretor Técnico C	de Souza

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	3 de 97

ÍNDICE

SEÇÃO	TÍTULO	PÁGINA
1.	OBJETIVO	6
2.	NORMAS E DOCUMENTOS COMPLEMENTARES	6
3.	TERMINOLOGIA E DEFINIÇÕES	9
4.	CONDIÇÕES GERAIS	11
4.1	Condições de Funcionamento, Transporte e Instalação	11
4.2	Garantia	12
4.3	Embalagem	13
4.4	Tensão de Expedição	13
4.5	Meio Ambiente	14
4.6	Programa Brasileiro de Etiquetagem – PBE	14
4.7	Carregamento	15
5.	CONDIÇÕES ESPECÍFICAS	15
5.1	Característica Nominal	15
5.2	Derivações	16
5.3	Limites de Elevação de Temperatura	17
5.4	Requisitos Relativos à Capacidade de Suportar Curto-Circuito	17
5.5	Marcação dos Enrolamentos e Terminais	18
5.6	Buchas	19
5.7	Acessórios	19
	Ligações dos Enrolamentos de Fase e Indicação do Desloca	mento
5.8	Angular	20
5.9	Placa de Identificação	21
5.10	Dispositivo de Alivio de Pressão	22
6.	CARACTERÍSTICAS CONSTRUTIVAS	22
6.1	Materiais Isolantes	22
6.2	Características do Óleo Isolante	23
6.3	Tanque, Tampa e Radiadores	23
6.4	Localização e Dimensionamento dos Componentes	23
6.5	Juntas de Vedação	24
6.6	Indicação do Nível do Óleo Isolante	25
6.7	Dispositivo de Aterramento	25
6.8	Sistema de Fixação da Tampa	25
	Numeração dos Terminais e Derivações dos Enrolamentos de	ο Δltο
6.9	Tensão e dos Terminais do Enrolamento de Baixa Tensão	25
6.10	Fixação e Suspensão da Parte Ativa	25
6.11	Estrutura de Apoio	26
6.12	Dispositivo para Fixação de Para-raios	26
6.13	Acabamento do Tanque e Radiadores	26
6.14	Massa do Transformador	27
6.15	Resistência ao Momento de Torção	27
6.16	Numeração de Série de Fabricação	27
6.17	Numeração Patrimonial	27
6.18	Parte Ativa	28
6.19		28
7.	Ferragens CARACTERÍSTICAS ELÉTRICAS	20 29
7. 7.1	Potências Nominais	29 29
7.1 7.2	Níveis de Isolamento	29 29
7.2	Derivações	29 29
7.3 7.4	•	29 29
1. 4	Frequência Nominal	29

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	4 de 97

7.5	Perdas, Corrente de Excitação e Impedância de Curto-Circuito (a 75°C)	29
7.6	Diagramas Fasoriais dos Transformadores	29
7.7	Diagramas de Ligações dos Transformadores	30
7.8	Tensão de Radiointerferência (TRI)	30
7.9	Nível de Ruído	30
8.	INSPEÇÃO E ENSAIOS	31
8.1	Generalidades	31
8.2	Ensaios de Rotina	32
8.3	Ensaios de Recebimento	33
8.4	Ensaios de Tipo	34
8.5	Descrição dos Ensaios	34
8.6	Aceitação e Rejeição	43
8.7	Relatórios dos Ensaios	44
	APRESENTAÇÃO DE PROPOSTA, APROVAÇÃO DE DOCUMENTOS E	
9.	DE PROTÓTIPOS	44
9.1	Geral	44
9.2	Desenhos que Deverão Acompanhar a Proposta	45
9.3	Aprovação de Protótipos	45
ANEXO A	TABELAS	46
TABELA 1	TOLERÂNCIA NAS PERDAS DE TRANSFORMADORES	46
TABELA 2	LIMITES DE ELEVAÇÃO DE TEMPERATURA (°C)	46
	VALORES MÁXIMOS ADMISSÍVEIS PARA A TEMPERATURA MÉDIA	
TABELA 3	DE CADA ENROLAMENTO APÓS CURTO-CIRCUITO	47
TABELA 4	ACESSÓRIOS PARA TRANSFORMADORES	47
TABELA 5	NÍVEIS DE ISOLAMENTO	47
TABELA 6	ESPAÇAMENTOS EXTERNOS MÍNIMOS NO AR	48
TABLEAG	NÍVEIS DE RUÍDO PARA TRANSFORMADORES ISOLADOS EM ÓLEO	
TABELA 7	COM POTÊNCIA NOMINAL IGUAL OU INFERIOR A 300 kVA	48
TABELA 8	DERIVAÇÕES	48
TABELA 9	MÁXIMA TENSÃO DE RADIOINTERFERÊNCIA (TRI)	49
TABLEAG	VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO	70
TABELA 10	E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES	49
IADELA IO	TRIFÁSICOS CLASSE 15 kV	73
	VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO	
TABELA 11	E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES	50
IADELA II	TRIFÁSICOS CLASSE 36,2 kV	30
	VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO	
TABELA 12	E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES	51
IADLLA IZ	MONOFÁSICOS CLASSE 15 kV	31
	VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO	
TABELA 13	E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES	52
IADELA IS	MONOFÁSICOS CLASSE 36,2 kV	32
TABELA 14	ESPESSURA DA CHAPA DE AÇO	52
IADELA 14	BUCHAS DE BAIXA TENSÃO PARA TRANSFORMADORES	52
TABELA 15	MONOFÁSICOS E TRIFÁSICOS (CONFORME NBR 5437)	53
TADEL A 46	PLANO DE AMOSTRAGEM PARA INSPEÇÃO GERAL, ÓLEO	E 2
TABELA 16	ESTANQUEIDADE, PINTURA, GALVANIZAÇÃO, JUNTAS DE	53
	VEDAÇÃO E EMBALAGEM	
TABELA 17	ESPECIFICAÇÃO DO ÓLEO ISOLANTE TIPO A (NAFTÊNICO) APÓS	54
ANEVOD	CONTATO COM O EQUIPAMENTO	
ANEXO B	DESENHOS TRANSFORMA POR MONOFÍSICO - DIMENSÕES CERAIS	55
DESENHO 1	TRANSFORMADOR MONOFÁSICO - DIMENSÕES GERAIS	56 57
DESENHO 2	TRANSFORMADOR TRIFÁSICO - DIMENSÕES GERAIS	57
DESENHO 3	SUPORTE PARA FIXAÇÃO DO TRANSFORMADOR AO POSTE	57

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	5 de 97

DESENHO 4	ESTRUTURA DE REFORÇO PARA TRANSFORMADOR DE 225 E 300 kVA	58
DESENHO 5	DISPOSITIVO DE ATERRAMENTO	59
DESENHO 6	DIAGRAMA DE LIGAÇÕES - TRANSFORMADOR MONOFÁSICO	60
DESENHO 7	DIAGRAMA DE LIGAÇÕES - TRANSFORMADOR TRIFÁSICO	61
DESENHO 8	PLACA DE IDENTIFICAÇÃO - TRANSFORMADOR MONOFÁSICO	62
DESENHO 9	PLACA DE IDENTIFICAÇÃO - TRANSFORMADOR TRIFÁSICO	63
	BUCHA 15 kV/160 A	64
	BUCHA 36,2 kV/160 A	65
	BUCHA 15/36,2 kV/160 A (TERMINAL)	66
	BUCHA 1,3 kV - 160/400 A	67
	BUCHA 1,3 kV - 160/400 A (CARACTERÍSTICAS ELÉTRICAS)	68
	BUCHA 1,3 kV - 160/400 A (TERMINAL T1)	69
DESENHO 16	BUCHA 1,3 kV - 400/800 A	70
DESENHO 17	BUCHA 1,3 kV - 400/800 A (CARACTERÍSTICAS ELÉTRICAS)	71
	BUCHA 1,3 kV - 400/800 A (TERMINAL T2)	72
	BUCHA 1,3 kV - 400/800 A (TERMINAL T3)	73
DESENHO 20	TERMINAL X2 PARA TRANSFORMADORES MONOFÁSICOS	74
DESENHO 21	SÍMBOLOS DE LIGAÇÃO, MARCAÇÃO DE TERMINAIS E DIAGRAMAS FASORIAIS	75
DESENHO 22	ENSAIO DE VERIFICAÇÃO DO DESEQUILÍBRIO DE TENSÃO	76
	SUPORTE PARA PARA-RAIOS - TRANSFORMADOR MONOFÁSICO	77
DESENHO 24	SUPORTE PARA PARA-RAIOS - TRANSFORMADOR TRIFÁSICO	78
DESENHO 25	NUMERAÇÃO PATRIMONIAL	79
DESENHO 26	DETALHAMENTO DAS BASES DAS EMBALAGENS	80
ANEXO C	INSPEÇÃO GERAL DOS TRANSFORMADORES	81
ANEXO D	VERIFICAÇÃO DO ESQUEMA DE PINTURA	82
ANEXO E	ENSAIO PARA VERIFICAÇÃO DA RESISTÊNCIA MECÂNICA DOS	85
	SUPORTES DE FIXAÇÃO DOS TRANSFORMADORES	
ANEXO F	QUADRO DE DADOS TÉCNICOS E CARACTERÍSTICAS GARANTIDAS	87
ANEXO G	QUADRO DE DESVIOS TÉCNICOS E EXCEÇÕES	90
ANEXO H	COTAÇÃO DE ENSAIOS DE TIPO – TRANSFORMADORES DE	91
ANIEWO I	DISTRIBUIÇÃO	
ANEXO I	AVALIAÇÃO DE PERDAS E PENALIDADES	92
ANEXO J	VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO	95
	E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES	
ANEXO K	TRIFÁSICOS COM POTÊNCIA SUPERIOR A 300 kVA	96
ANEXUK	RUMANEU PAURAU CUM NUMERACAU PATRIMUNIAL E SERIAL	чn

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	6 de 97

1. OBJETIVO

Esta norma estabelece a especificação e padronização das características elétricas e mecânicas dos transformadores monofásicos e trifásicos, aplicáveis em redes aéreas de distribuição, nas tensões primárias 13,8 e 34,5 kV, com enrolamento de cobre ou alumínio, imersos em óleo mineral isolante, resfriamento natural, para instalação em postes e plataformas.

Os transformadores abrangidos por esta norma devem satisfazer ao prescrito nas seguintes normas: ABNT NBR 5356 Partes 1 a 5 e ABNT NBR 5440, prevalecendo, em caso de dúvidas, os requisitos aqui estabelecidos.

2. NORMAS E DOCUMENTOS COMPLEMENTARES

Como forma de atender aos processos de fabricação, inspeção e ensaios, os transformadores devem satisfazer às exigências desta, bem como de todas as normas técnicas, nas edições mais recentes, mencionadas a seguir:

Buchas para tensões alternadas superiores a 1 kV - Especificação.
Transformador de potência - Parte 1: Generalidades.
Transformador de potência - Parte 2: Aquecimento.
Transformador de potência - Parte 3: Níveis de isolamento, ensaios dielétricos e
espaçamentos externos em ar.
Transformador de potência - Parte 4: Guia para ensaio de impulso atmosférico e
de manobra para transformadores e reatores.
Transformador de potência - Parte 5: Capacidade de resistir a curtos-circuitos.
Conectores de cobre para condutores elétricos em sistemas de potência.
Buchas para transformadores sem conservador de óleo - Tensão nominal 15 kV e
25,8 kV - 160 A - Dimensões.
Buchas para transformadores sem conservador de óleo, tensão 1,3 kV 160 A,
400 A e 800 A - Dimensões.
Transformadores para redes aéreas de distribuição - Requisitos.
Tubos de aço-carbono com ou sem solda longitudinal, pretos ou galvanizados -
Especificação.
Bobinas e chapas finas a frio de aço-carbono para estampagem - Especificação.
Método de ensaio para determinação de tensão interfacial de óleo-água.
Galvanização de produtos de aço ou ferro fundido - Especificação.
Vernizes utilizados para isolação elétrica - Ensaios.
Chapas finas a frio de aço carbono para uso estrutural.
Chapas finas a quente de aço carbono para uso estrutural.
Líquidos isolantes elétricos - Determinação da rigidez dielétrica (eletrodos de
disco).

ASTM A901

ASTM D92

TRANSFORMADORES PARA REDES AÉREAS DE DISTRIBUIÇÃO – CLASSES 15 e 36,2 kV

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	7 de 97

ABNT NBR 7034	Materiais isolantes elétricos - Classificação térmica.
ABNT NBR 7277	Transformadores e reatores - Determinação do nível de ruído.
ABNT NBR 8094	Material metálico revestido e não revestido - Corrosão por exposição à nevoa
	salina - Método de ensaio.
ABNT NBR 10443	Tintas e vernizes - Determinação da espessura de película seca sobre superfícies
	rugosas - Método de ensaio.
ABNT NBR 10710	Líquido isolante elétrico - Determinação do teor de água.
ABNT NBR 11003	Tintas - Determinação da aderência.
ABNT NBR 11341	Derivados de petróleo - Determinação dos pontos de fulgor e de combustão em
	vaso aberto Cleveland.
ABNT NBR 11407	Elastômero vulcanizado - Determinação das alterações das propriedades físicas,
	por efeito de imersão em líquidos - Método de ensaio.
ABNT NBR 11888	Bobinas e chapas finas a frio e a quente de aço-carbono e aço de baixa liga e
	alta resistência - Requisitos gerais.
ABNT NBR 12133	Líquidos isolantes elétricos - Determinação do fator de perdas dielétricas e da
	permissividade relativa (constante dielétrica) - Método de ensaio.
ABNT NBR 13882	Líquidos isolantes elétricos - Determinação do teor de bifenilas policloradas
	(PCB).
ABNT NBR 14248	Produtos de petróleo - determinação do número de acidez e da basicidade -
	Método do indicador.
ABNT NBR 14274	Equipamento elétrico - Determinação da compatibilidade de materiais
	impregnados com óleo mineral isolante.
ABNT NBR 15121	Isolador para alta tensão - Ensaio de medição de radiointerferência.
ANBT NBR NM IEC	Métodos de ensaios comuns para materiais de isolação e de cobertura de cabos
60811-4-1	elétricos - Parte 4: Métodos específicos para os compostos de polietileno e
	polipropileno - Capítulo 1.
ABNT NBR IEC 6015	Líquidos isolantes - Determinação da rigidez dielétrica à frequência industrial
	- Método de ensaio.
ABNT NBR IEC 6052	
ABNT NBR ISO 724	Rosca métrica ISO de uso geral - Dimensões básicas.
ASTM A900 Sta	andard Test Method for Lamination Factor Amorphous Magnetic Strip.

ASTM D297 Standard Test Method for Rubber Products - Chemical Analysis.

ASTM D412 Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension.

ASTM D471 Standard Test Method for Rubber Property - Effect of Liquids.

ASTM D523 Standard Test for Specular Gloss.

Standard Specification for Amorphous Magnetic Core Alloys, Semi-Processed Types.

Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester.

A OTIM DOZO

TRANSFORMADORES PARA REDES AÉREAS DE DISTRIBUIÇÃO – CLASSES 15 e 36,2 kV

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	8 de 97

ASTM D870	Standard Practice for Testing Water Resistance of Coatings Using Water Immersion.
ASTM D877	Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using
	Disk Electrodes.
ASTM D924	Standard Test Method for Dissipation Factor (or Power Factor) and Relative
	Permittivity (Dielectric Constant) of Electrical Insulating Liquids.
ASTM D971	Standard Test Method for Interfacial Tension of Oil Against Water by the Ring
	Method.
ASTM D974	Standard Test Method for Acid and Base Number by Color-Indicator Titration.
ASTM D1014	Standard Practice for Conducting Exterior Exposure Tests of Paints and Coatings on
	Metal Substrates.
ASTM D1500-07	Standard Test Method for ASTM Color of Petroleum Products (ASTM Color Scale).
ASTM D1533	Standard Test Method for Water in Insulating Liquids by Coulometric Karl Fischer
	Titration.
ASTM D1619	Standard Test Methods for Carbon Black-Sulfur Content.
ASTM D1735	Standard Practice for Testing Water Resistance of coatings Using Water Fog
	Apparatus.
ASTM D2240	Standard Test Method for Rubber Property 8212; Durometer Hardness.
ASTM D2668-07	Standard Test Method for 2,6 di tert Butyl p Cresol and 2,6 di tert Butyl Phenol in
	Electrical Insulating Oil by Infrared Absorption.
ASTM D2247	Standard Practice for Testing Water Resistence of Coating in 100% Relative Umidity.
ASTM D3349	Standard Test Method for Absorption Coefficient of Ethylene Polymer Material
	Pigmented With Carbon Black.
ASTM D3359	Standard Test Methods for Measuring Adhesion by Tape Test.
DIN 50018	Testing in a Saturated Atmosphere in the Presence of Sulfur Dioxide.
IEC 60214-1	Tap-Changers – Part 1: Performance Requirements and Test Methods.
SIS-05-5900	Pictorial Surface Preparation Standard for Painting Steel Surfaces.

Notas:

- 1) Poderão ser aceitas propostas para equipamentos projetados e/ou fabricados através de normas diferentes das listadas, desde que essas assegurem qualidade igual ou superior às das mencionadas anteriormente. Neste caso, o proponente deverá citá-las em sua proposta e submeter uma cópia de cada uma à CHESP, indicando claramente os pontos onde as mesmas divergem das correspondentes da ABNT.
- 2) Tendo em vista o item acima, deve ficar claro que, após apreciação por parte da CHESP, não havendo concordância em relação às normas divergentes apresentadas, o posicionamento final da concessionária será sempre pela prevalência das normas ABNT.
- 3) Todas as normas ABNT mencionadas acima devem estar à disposição do inspetor da CHESP no local da inspeção.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	9 de 97

- 4) Deverá ser usado o Sistema Internacional de Unidades (Sistema Métrico) para todo e qualquer fornecimento a ser realizado.
- 5) Todos os materiais que não são especificamente mencionados nesta norma, mas que são usuais ou necessários para a eficiente operação dos equipamentos, considerar-se-ão como aqui incluídos e devem ser fornecidos pelo fabricante sem ônus adicional.
- 6) Esta norma foi baseada nos seguintes documentos:

ABNT NBR 5356 - Transformadores de potência - Partes 1 a 5.

ABNT NBR 5440 - Transformadores para redes aéreas de distribuição - Requisitos.

2.1 NORMAS TECNICAS INTERNACIONAIS

ASTM A900 - Standard test method for lamination factor strip; of amorphous magnetic strip;

3. TERMINOLOGIA E DEFINIÇÕES

São adotadas aqui as definições a seguir, complementadas pelas constantes nas normas ABNT: NBR 5440, NBR 5458 e NBR 5356-1.

Corrente de Excitação: Valor eficaz da corrente que flui através do terminal de linha de um enrolamento, quando a tensão nominal (tensão de derivação) à frequência nominal é aplicada a este enrolamento, estando o(s) outro(s) enrolamentos em circuito aberto.

Notas:

- 1) Para um transformador trifásico, este valor representa a média aritmética dos valores das correntes nas três fases. A corrente de excitação de um enrolamento é frequentemente expressa em porcentagem da corrente nominal desse enrolamento.
- 2) Em transformadores polifásicos, as correntes de excitação dos vários terminais de linha podem ser desiguais. Se neste caso, os valores das diferentes correntes de excitação não forem indicados separadamente, será admitida que a corrente de excitação é a média aritmética dessas correntes.

Deslocamento Angular: Diferença angular entre os fasores que representam as tensões entre o ponto neutro (real ou fictício) e os terminais correspondentes de dois enrolamentos, quando um sistema de tensões de sequência positiva é aplicado aos terminais do enrolamento de mais alta tensão, em ordem de sequência alfabética, se eles forem identificados por letras ou em sequência numérica, se identificados por números. Convenciona-se que os fasores giram em sentido antihorário.

Nota:

O fasor do enrolamento de mais alta tensão é tomado como referência e a defasagem de todos os outros enrolamentos é expressa por uma indicação horária, isto é, a hora indicada pelo fasor do enrolamento, considerando-se que o fasor do enrolamento de mais alta tensão está sobre a posição 12 h (quanto maior o número, maior a defasagem em atraso).

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	10 de 97

Impedância de Curto-Circuito (de um par de enrolamentos): Impedância série equivalente, Z = R + jX, expressa em ohms, à frequência nominal e à temperatura de referência, medida entre os terminais de um enrolamento, enquanto os terminais do outro enrolamento são curto-circuitados e os demais, caso existam, estão em circuito aberto. Para um transformador trifásico, a impedância é expressa como uma impedância de fase (ligação estrela equivalente).

Notas:

- 1) A impedância de curto-circuito é geralmente, expressa em percentagem, tendo como base a tensão nominal do enrolamento ou a tensão de derivação e a potência nominal do enrolamento.
- 2) Quando expressas em percentagem, a tensão de curto-circuito e a impedância de curto-circuito são numericamente iguais.

Perdas em Carga: Potência ativa absorvida, relativa a um par de enrolamentos, à frequência nominal e à temperatura de referência quando a corrente nominal (corrente de derivação) flui através do terminal de linha de um dos enrolamentos, estando os terminais do outro enrolamento curtocircuitados.

Nota:

Para um transformador com dois enrolamentos existe apenas uma combinação de enrolamentos e um valor de perdas em carga.

Perdas em Vazio: Potência ativa absorvida quando a tensão nominal (tensão de derivação) à frequência nominal é aplicada aos terminais de um enrolamento, estando o(s) outro(s) enrolamento(s) em circuito aberto.

Perdas Totais: Soma das perdas em vazio e das perdas em carga.

Nota:

A potência consumida pelos equipamentos auxiliares não está inclusa nas perdas totais e deve ser indicada separadamente.

Polaridade dos Terminais: Designação dos sentidos relativos instantâneos das correntes nos terminais de linha de um transformador.

Polaridade Aditiva (Subtrativa): Polaridade dos terminais de um transformador monofásico tal que, ligando-se um terminal primário ao terminal secundário não correspondente (correspondente), e aplicando-se tensão a um dos enrolamentos, a tensão medida entre os dois terminais não ligados é maior (menor) do que a tensão aplicada.

Regulação: Diferença aritmética entre a tensão em vazio de um enrolamento e a tensão em carga nos terminais do mesmo enrolamento, com uma carga especificada, sendo a tensão aplicada ao outro ou a um dos outros enrolamentos, igual a:

- a) sua tensão nominal se estiver ligado na derivação principal, ou;
- b) tensão de derivação se estiver ligado em outra derivação.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	11 de 97

Essa diferença é, geralmente, expressa em percentagem da tensão em vazio do primeiro enrolamento.

Rendimento de um Transformador: Relação, geralmente expressa em percentagem, entre a potência ativa fornecida e a potência ativa recebida pelo transformador.

Transformador: Equipamento estático com dois ou mais enrolamentos que, por indução eletromagnética, transforma um sistema de tensão e corrente alternada em outro sistema de tensão e corrente, de valores geralmente diferentes, mas à mesma frequência, com o objetivo de transmitir potência elétrica.

4. CONDIÇÕES GERAIS

4.1. Condições de Funcionamento, Transporte e Instalação

4.1.1 Condições do Local de Instalação

Os equipamentos serão instalados em região com as seguintes condições ambientais:

- altitude limitada a 1000 m;
- temperatura: máxima do ar ambiente 40°C e média, em um período de 24 horas, 30°C;
- temperatura mínima do ar ambiente: 0°C;
- pressão máxima do vento: 700 Pa (70 daN/m²);
- umidade relativa do ar até 100%;
- exposição direta a chuva e poeira;
- nível de radiação solar: 1,1 kW/m², com alta incidência de raios ultravioleta.

4.1.2 Condições Especiais

São consideradas condições especiais de funcionamento, transporte e instalação, as que podem exigir construção especial e/ou revisão de alguns valores nominais e/ou cuidados especiais no transporte, instalação ou funcionamento do transformador e que devem ser levadas ao conhecimento do fabricante.

Notas:

Constituem exemplos de condições especiais:

- 1) instalação em altitudes superiores a 1.000 m;
- 2) instalação em que as temperaturas do meio de resfriamento sejam superiores às especificadas em 4.1.1:
- 3) exposição a umidade excessiva, atmosfera salina, gases ou fumaças prejudiciais;
- 4) exposição a sujeira ou pós prejudiciais;

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	12 de 97

- 5) exposição a materiais explosivos na forma de gases ou pós;
- 6) sujeição a vibrações anormais;
- 7) sujeição a condições precárias de transporte e instalação;
- 8) limitação de espaço na sua instalação;
- 9) exigência de redução dos níveis de ruído e/ou de radiointerferência;
- 10) exigências de isolamento diferentes das especificadas nesta norma;
- 11) necessidade de proteção especial de pessoas contra contatos acidentais com partes vivas do transformador.
- 12) dificuldade de manutenção;
- 13) funcionamento em condições tais como: em regime ou frequências não usuais ou com forma de onda distorcida ou com tensões assimétricas.

4.1.3. Condições de Fornecimento

Os transformadores devem:

- a) ser fornecidos completos, com todos os componentes necessários ao seu perfeito funcionamento;
- b) ter todas as peças correspondentes intercambiáveis, quando de mesmas características nominais e fornecidas pelo mesmo fabricante;
- c) ter o mesmo projeto e serem essencialmente idênticos quando fizerem parte de um mesmo item do CFM;
- d) ser projetados de modo que as manutenções possam ser efetuadas pela CHESP ou em oficinas por ela qualificadas, sem o emprego de máquinas ou ferramentas especiais;
- e) atender às exigências constantes das últimas revisões da ABNT NBR 5356 e da ABNT NBR 5440, salvo quando explicitamente citado em contrário.

4.2. Garantia

O período de garantia dos equipamentos, obedecido ainda o disposto no CFM, será de dezoito meses a partir da data de entrada em operação ou vinte e quatro, a partir da entrega, prevalecendo o prazo referente ao que ocorrer primeiro, contra qualquer defeito de fabricação, material e acondicionamento.

Caso os equipamentos apresentem qualquer tipo de defeito ou deixem de atender aos requisitos exigidos pelas normas da CHESP, um novo período de garantia de doze meses de operação satisfatória, a partir da solução do defeito, deve entrar em vigor para o lote em questão. Dentro do referido período as despesas com mão-de-obra decorrentes da retirada e instalação de equipamentos comprovadamente com defeito de fabricação, bem como o transporte destes entre o almoxarifado da concessionária e o fornecedor, incidirão sobre o último.

O período de garantia deverá ser prorrogado por mais doze meses em quaisquer das seguintes hipóteses:

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	13 de 97

- em caso de defeito em equipamento e/ou componente que comprometa o funcionamento de outras partes ou do conjunto; sendo a prorrogação válida para todo equipamento, a partir da nova data de entrada em operação;
- se o defeito for restrito a algum componente ou acessório o(s) qual(is) não comprometam substancialmente o funcionamento das outras partes ou do conjunto, deverá ser estendido somente o período de garantia da(s) peça(s) afetadas, a partir da solução do problema, prosseguindo normalmente a garantia para o restante do equipamento.

4.3. Embalagem

- a) Os transformadores deverão ser embalados, individualmente, em embalagem adequada que permita o manuseio, armazenagem e transporte, sem lhes causar danos, devendo a madeira empregada ser de boa qualidade, certificada pelo IBAMA e as tábuas possuírem espessura mínima 25 mm. A base deve ter as dimensões mínimas indicadas no Desenho 26.
- b) A embalagem deve ser confeccionada de forma a possibilitar:
- Uso de empilhadeira;
- Uso de pontes rolantes ou guindastes, neste caso, a embalagem deverá permitir a carga e a descarga através da orelha de suspensão do transformador;
- transporte e armazenagem superposta de, no mínimo, três transformadores.
- c) Os transformadores deverão ser acondicionados de modo a proteger todas as partes da melhor maneira possível contra danos e perdas, oriundas de manuseio e condições climáticas extremas, durante o transporte.
- d) Os materiais de acondicionamento não devem ser retornáveis.
- e) Cada volume deve trazer indelevelmente marcadas as seguintes indicações:
 - nome e/ou marca comercial do fabricante:
 - a sigla da CHESP;
 - nome do equipamento;
 - tipo e/ou modelo;
 - tensão nominal:
 - potência nominal;
 - número do contrato de fornecimento de material (CFM);
 - número da nota fiscal;
 - massa bruta do volume, em kg;
- outras informações exigidas no CFM.

4.4. Tensão de Expedição

Os transformadores devem ser expedidos no TAP correspondente à tensão nominal.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	14 de 97

4.5. Meio Ambiente

No caso de fornecimento nacional, os fabricantes e fornecedores devem cumprir rigorosamente, em todas as etapas da fabricação, do transporte e do recebimento dos transformadores, inclusive nos processos utilizados no revestimento anticorrosivo e de acabamento de superfícies, a legislação ambiental - especialmente os instrumentos legais listados no Capítulo 4 - e as demais legislações federais, estaduais e municipais aplicáveis.

No caso de fornecimento internacional, os fabricantes e fornecedores estrangeiros devem cumprir a legislação ambiental vigente nos seus países de origem e as normas internacionais relacionadas à produção, ao manuseio e ao transporte dos transformadores, até a entrega no local indicado pelas Chesp. Ocorrendo transporte em território brasileiro, os fabricantes e fornecedores estrangeiros devem cumprir a legislação ambiental brasileira, especialmente os instrumentos legais listados no Capítulo 4, e as demais legislações estaduais e municipais aplicáveis.

O fornecedor é responsável pelo pagamento de multas e pelas ações decorrentes de práticas lesivas ao meio ambiente, que possam incidir sobre a Chesp, quando derivadas de condutas praticadas por ele ou por seus subfornecedores.

No transporte dos transformadores, devem ser atendidas as exigências do Ministério dos Transportes e dos órgãos ambientais competentes, especialmente as relativas à sinalização da carga.

A Chesp poderá verificar nos órgãos oficiais de controle ambiental, a validade das licenças de operação da unidade industrial e de transporte dos fornecedores e subfornecedores.

Visando orientar as ações da Chesp quanto à disposição final dos transformadores retirados do sistema, o fornecedor deve apresentar, quando exigidas pela Chesp, as seguintes informações:

- a) Materiais usados na fabricação dos componentes dos transformadores e respectivas composições físico-químicas de cada um deles;
 - b) Efeitos desses componentes no ambiente, quando de sua disposição final (descarte);
- c) Orientações, em conformidade com as legislações ambientais aplicáveis, quanto à forma mais adequada de disposição final dos transformadores, em particular do óleo isolante contido nos equipamentos e dos componentes em contato com o óleo;
- d) Disponibilidade do proponente e as condições para receber de volta os transformadores de sua fabricação, ou por ele fornecidas, que estejam fora de condições de uso.

4.6. Programa Brasileiro de Etiquetagem - PBE

De acordo com a Portaria de Nº 378/2010 do INMETRO, de 28 de setembro de 2010, a fornecedora deverá, obrigatoriamente, estar em conformidade com os requisitos estabelecidos pelo Programa Brasileiro de Etiquetagem (PBE) para Transformadores de Distribuição em líquidos isolantes.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	15 de 97

As condições acima estabelecidas serão verificadas na visita de inspeção de homologação, pelo inspetor da Chesp.

4.7. Carregamento

Os transformadores de distribuição devem ser projetados para atender até 1,5 PU de sua potência nominal, sem limitações de nenhum componente associado (buchas, comutadores de derivação, conexões, etc.), conforme definido nas ABNT NBR 5440:2014.

5. CONDIÇÕES ESPECÍFICAS

5.1. Característica Nominal

A característica nominal deve ser tal que o transformador possa fornecer corrente nominal sob condição de carga constante, sem exceder os limites de elevação de temperatura fixados nesta norma, admitindo-se a tensão aplicada igual à tensão nominal e na frequência nominal.

5.1.1. Potência Nominal dos Enrolamentos

A potência nominal deve ser selecionada dentre as constantes das padronizações correspondentes ao tipo de transformador e deve levar em consideração as condições normais de funcionamento, transporte e instalação especificadas no Item 4.1.1.

5.1.2. Condições de Sobrecarga

Os transformadores podem ser sobrecarregados de acordo com a ABNT NBR 5416.

Os equipamentos auxiliares tais como, buchas, comutadores de derivações e outros, devem suportar sobrecargas correspondentes a, pelo menos, uma vez e meia a potência nominal do transformador. Quando se desejarem condições de sobrecarga diferentes das acima mencionadas o fabricante deve ser informado.

5.1.3. Tensão Nominal dos Enrolamentos

A tensão nominal, em kV, de um enrolamento do transformador deve ser escolhida, entre os valores relacionados nesta norma.

Salvo indicação em contrário, os transformadores devem ser capazes de funcionar, na derivação principal, com tensão diferente da nominal, nas seguintes condições:

a) Com tensão aplicada ao enrolamento primário excedendo, no máximo, 5% a sua tensão nominal, mantida a corrente secundária nominal;

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	16 de 97

b) Com tensão aplicada ao enrolamento primário superior a 105% da tensão nominal e inferior a 110% desta, sob frequência nominal, esta tensão, para uma corrente secundária igual a "k" vezes a corrente nominal, deve ser limitada ao valor dado pela fórmula:

LOP3=1 1-30 onde: 0 < k < 1

Nota:

No caso de funcionamento nas condições "a" e "b", o acréscimo resultante na elevação de temperatura é, geralmente, tão pequeno que pode ser desprezado.

- c) Com tensão primária 5% abaixo da tensão nominal do enrolamento primário, mantida a potência nominal do enrolamento secundário, sob frequência nominal,
- sendo que, nesta condição, as elevações de temperatura das várias partes do transformador não devem ultrapassar em mais de 5°C as elevações de temperatura obtidas em condições nominais;
- d) Em vazio, com tensão aplicada ao enrolamento primário igual a 110% da sua tensão nominal, sob frequência nominal, sem que as elevações de temperatura ultrapassem os limites fixados na Tab. 2;
- f) Em vazio, com tensão aplicada ao enrolamento primário acima da tensão nominal, sob frequência abaixo da nominal, desde que nem a tensão nem a relação tensão/frequência excedam 110% dos respectivos valores nominais, sem que as elevações de temperatura excedam os limites estabelecidos na Tabela 2.

Nota:

As disposições anteriores, para a derivação principal, são aplicáveis a qualquer outra derivação, substituindo-se os termos "tensão nominal" por "tensão de derivação" e "corrente nominal" por "corrente de derivação".

5.1.4. Nível de Isolamento

O nível de isolamento dos enrolamentos deve ser escolhido entre os valores indicados na Tabela 5. Os espaçamentos mínimos a serem observados no ar estão indicados na Tabela 6.

5.2. Derivações

5.2.1. Número de Derivações

Salvo especificação diferente, os transformadores devem ter, no enrolamento de média tensão, pelo menos três derivações, além da principal, para uma faixa de derivação que permita obter a potência nominal.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	17 de 97

5.2.2. Impedância de Curto-Circuito

A CHESP deve especificar a impedância de curto-circuito, em percentagem, nas derivações principais de cada par de enrolamentos e nas outras combinações de derivações que julgar necessário, na temperatura de referência.

5.2.3. Perdas

O fabricante deve garantir as perdas em vazio e as perdas totais, na temperatura de referência, com tensão senoidal, à frequência nominal, na derivação principal.

A CHESP pode indicar para quais derivações, além da principal, o fabricante deve informar as perdas em vazio e as perdas totais.

As perdas obtidas nos ensaios dos transformadores de cada ordem de compra, não devem exceder as perdas garantidas, em percentagem superior à indicada na Tabela 1.

5.3. Limites de Elevação de Temperatura

As elevações de temperatura dos enrolamentos, do óleo, das partes metálicas e outras partes dos transformadores, projetadas para funcionamento nas condições normais, previstas no item 4.1.1, não devem exceder os limites especificados na Tabela 2; devendo o ensaio ser executado de acordo com a ABNT NBR 5356-2.

Os limites de elevação de temperatura são válidos para todas as derivações.

5.4. Requisitos Relativos à Capacidade de Suportar Curto-Circuito

5.4.1. Considerações Gerais

Os transformadores devem ser projetados e construídos para suportar sem danos os efeitos térmicos e dinâmicos de curtos-circuitos externos, nas condições especificadas nos Itens 5.4.2 e 8.5.11, onde são indicadas as condições de sobrecorrente e os requisitos da capacidade de suportar curtos-circuitos, respectivamente.

5.4.2. Transformadores com Dois Enrolamentos Separados

A corrente de curto-circuito simétrico (valor eficaz) deve ser calculada utilizando-se a impedância de curto-circuito do transformador. O valor da corrente não deve exceder, entretanto, 25 vezes o da corrente nominal do enrolamento considerado.

O valor de crista da corrente de curto-circuito simétrica deve ser calculado de acordo com a ABNT NBR 5356-5.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	18 de 97

Nota:

Quando a combinação das impedâncias do transformador e do sistema resultar em níveis de correntes de curto-circuito superiores a 25 vezes a corrente nominal do transformador, recomenda-se que sejam tomadas medidas para reduzir este valor no ponto de aplicação do equipamento.

5.5. Marcação dos Enrolamentos e Terminais

5.5.1. Marcação dos Enrolamentos

Os terminais dos enrolamentos e respectivas ligações devem ser claramente identificados por meio de marcação constituída por algarismos e letras, as quais devem ser fielmente reproduzidas no diagrama de ligações.

No comutador de derivações a marcação deve ser feita com caracteres gravados em baixo relevo, altura de 6 mm, pintados com tinta indelével, contrastante com a cor do comutador.

5.5.2. Terminais

Os terminais de ligação dos transformadores monofásicos ou trifásicos devem ser dos tipos T1, T2 e T3 conforme a ABNT NBR 5437.

Os terminais dos diversos enrolamentos devem ser marcados com as letras maiúsculas H e X. A letra H é reservada ao enrolamento de média tensão e a X ao enrolamento de baixa tensão. Tais letras devem ser acompanhadas pelos números 0, 1, 2, 3, conforme item 5.5.5.

5.5.3. Terminais de Média Tensão

Os terminais de média tensão devem ser marcados H1, H2 e H3.

O terminal H1 deve ficar localizado à direita do grupo de terminais de média tensão, quando se olha o transformador do lado desta tensão. Os outros terminais H devem seguir a ordem numérica, da direita para a esquerda.

Quando o enrolamento de média tensão, em transformadores monofásicos, possuir apenas um terminal acessível externamente, este será marcado com H1 e o outro terminal, aterrado internamente, é designado por H2T.

5.5.4. Terminal de Neutro

Todo terminal de neutro deve ser marcado conforme item 5.5.5.

5.5.5. Terminais de Baixa Tensão

Nos transformadores monofásicos os terminais de baixa tensão são designados X1, X2 e X3, sendo X2 a bucha de neutro e nos trifásicos X0, X1, X2 e X3, sendo X0 a bucha de neutro.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	19 de 97	

Devem ser numerados da esquerda para a direita, quando se olha o transformador pelo lado de BT.

5.6. Buchas

As buchas devem:

- satisfazer ao disposto nas normas ABNT: NBR 5034, NBR 5435 e NBR 5437;
- ter nível de isolamento com valor igual ou superior ao nível de isolamento dos enrolamentos a que estão ligadas;
- ser capazes de suportar os ensaios dielétricos a que são submetidos os transformadores, segundo os valores especificados na Tabela 5.

As buchas de baixa tensão devem ser dimensionadas conforme a Tabela 15.

Alternativamente, para transformadores monofásicos, pode-se substituir a bucha X2 por uma barra de aço inoxidável soldada externamente conforme Desenho 20, possuindo internamente meios para conexão ao tanque; ou ainda um terminal do tipo T1 conectado diretamente ao tanque.

5.7. Acessórios

Os transformadores, salvo exigência em contrário, devem possuir os acessórios especificados na Tabela 4.

5.7.1. Indicador Externo de Nível do Óleo (quando especificado)

Deve ser colocado em local visível, sempre que possível no lado da baixa tensão. Deve ter referência para os níveis de óleo mínimo, máximo e a 25°C.

Transformadores desprovidos de indicador externo de nível do óleo, devem ter uma linha ou outra indicação indelével, no interior do tanque, estabelecendo o nível do óleo a 25°C.

5.7.2. Válvula de Drenagem do Óleo (quando especificado)

Deve ser colocada na parte inferior da parede do tanque. Todas as válvulas de drenagem do óleo devem ser providas de bujão.

5.7.3. Dispositivo para Retirada de Amostra do Óleo (quando especificado)

Deve ser colocado na parte inferior do tanque.

5.7.4. Meios de Aterramento do Tanque

Os transformadores devem ter na parte exterior do tanque, conforme indicado nos desenhos, um dispositivo de material não ferroso ou inoxidável que permita fácil ligação à terra.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	20 de 97	

5.7.5. Meios para Suspensão da Parte Ativa e do Transformador Completamente Montado

O transformador deve ser provido de meios (alças, olhais, ganchos, etc.) que permitam levantá-lo completamente montado, inclusive com óleo. A parte ativa também deve dispor do mesmo tipo de dispositivo.

5.7.6. Sistema de Comutação de Tensões

O comutador de derivações deve ser do tipo comando rotativo, com mudança simultânea nas fases, para operação sem tensão e permitir acomodação e contato eficientes em todas as posições. O seu acionamento deve ser feito externamente ao tanque devendo ser instalado de forma a garantir a estanqueidade. A parte externa do comutador deve ser protegida por intermédio de tampa imperdível, confeccionada em alumínio.

O comutador deve ser conforme a IEC 20214-1, porém suportando no mínimo 300 operações contínuas sob temperatura mínima de 75°C, sob uma pressão de 2,0 kgf/cm², no ensaio de durabilidade mecânica.

O material da parte externa do comutador, se não metálico, deve resistir aos raios solares e às variações climáticas conforme ISO 4892-1 (Exposição) e ISO 179-2 (Avaliação mecânica), com um tempo de exposição de 1000 horas. A perda de resistência mecânica deve ser menor que 50%. Alternativamente, o material da parte externa deve conter um mínimo de 2% do teor de negro de fumo verificado conforme ABNT NBR NM IEC 60811-4-1 e possuir coeficiente de absorção de UV de no mínimo 4000 Abs/cm² conforme ASTM D3349.

Na manopla de acionamento deve estar escrito, de forma legível e indelével, "Operar Desenergizado".

Adicionalmente deve ser indicado próximo ao acionamento do comutador de forma visível e indelével os dizeres "OPERAR SEM TENSÃO."

A rigidez dielétrica mínima do material do sistema de comutação deve ser 10 kV/mm, conforme método de ensaio previsto na ABNT NBR 5405.

As posições do sistema de comutação devem ser marcadas em baixo relevo e pintadas com tinta indelével branca.

5.7.7. Bujão de Drenagem do Óleo (quando especificado)

Deve ser colocado na parte inferior do tanque.

5.8. Ligações dos Enrolamentos de Fase e Indicação do Deslocamento Angular

O deslocamento angular, nos transformadores trifásicos ligados em triângulo-estrela, deve ser 30°, com as fases de baixa tensão atrasadas em relação às correspondentes da média tensão, ligação Dyn1, conforme Desenho 21.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	21 de 97	

5.9. Placa de Identificação

O transformador deve ser provido de placa de identificação metálica, à prova de tempo, em posição visível, a qual deve conter, indelevelmente marcadas, no mínimo as seguintes informações:

- a palavra "Transformador";
- nome do fabricante e local de fabricação;
- número de série de fabricação;
- mês/ano de fabricação;
- designação e data da norma brasileira aplicável;
- tipo (segundo a classificação do fabricante);
- número de fases;
- classe de tensão:
- tensão suportável à frequência industrial;
- tensão suportável de impulso atmosférico;
- potência nominal, em kVA;
- diagrama de ligações, contendo todas as tensões nominais e de derivação;
- polaridade (para transformadores monofásicos) ou diagrama fasorial (para transformadores trifásicos);
- impedância de curto-circuito, em porcentagem;
- tipo de óleo isolante e volume necessário, em litros;
- massa total aproximada, em quilogramas;
- número do CFM.

A impedância de curto-circuito deve ser indicada para a derivação principal, corrigida para a temperatura de referência.

O diagrama de ligações deve ser constituído por um esquema dos enrolamentos, mostrando as ligações permanentes, bem como todas as derivações e terminais, com os respectivos números e letras indicativas. Deve conter, também, uma tabela mostrando, separadamente, as ligações dos diversos enrolamentos, com a disposição e identificação de todas as buchas, bem como a posição do comutador para a tensão nominal e as tensões de derivação. Devem constar nele as tensões expressas em volts, não sendo necessário escrever esta unidade.

Qualquer enrolamento aterrado deve ter a letra "T" escrita no diagrama de ligações, junto da indicação do respectivo enrolamento.

Deve ter formato A6 (105 mm x 148 mm), com os dados nela constantes e suas respectivas disposições em conformidade com o disposto nos Desenhos 8 e 9. A placa deve ser confeccionada em alumínio anodizado, com espessura mínima 0,8 mm ou aço inoxidável espessura 0,5 mm, localizada conforme Desenhos 1 e 2, de modo a permitir a leitura dos dados com o transformador instalado. Deve ser fixada através de rebites de material resistente à corrosão, em um suporte com

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	22 de 97

base que impeça a deformação da mesma, soldado no tanque. Não é permitida a fixação da placa nos radiadores.

Deve ser observado um afastamento de, no mínimo, 20 mm entre o corpo do transformador e qualquer parte da placa.

5.10. Dispositivo de Alivio de Pressão

O transformador deve ser equipado com um dispositivo de alivio de pressão interna, com os seguintes requisitos mínimos:

- a) pressão de alivio de 69 kPa (0,70 kgf/cm²) ±20%;
- b) pressão de selamento mínima de 41,4 kPa (0,42 kgf/cm²);
- c) taxa de vazão de 9,91 cm³/min x 105 cm³/min (35 pés cúbicos por minuto), a 103,5 kPa (1,06 kgf/cm²) e a 21,1°C;
- d) taxa de admissão de ar faixa de 41,4 kPa (0,42 kgf/cm²) a 55,2 kPa (0,56 kgf/cm²) igual a zero;
- e) temperatura de operação de -29 °C a + 105 °C.

Além disso, o dispositivo deve possuir também as seguintes características:

- a) orifício de admissão de ¼ pol (6,4 mm) 18 NPY;
- b) corpo hexagonal de latão de 16 mm, dimensionado para suportar uma força longitudinal de 45 kgf;
- c) disco externo de vedação para impedir, de forma permanente, a entrada de poeira, umidade e insetos; este deve ser de material não oxidável, com resistência mecânica suficiente para não sofrer deformação no manuseio;
- d) anel externo de material não oxidável, com diâmetro mínimo de 21 mm, para acionamento manual, dimensionado para suportar uma força mínima de puxamento de 11 kgf, sem deformação;
- e) anéis de vedação e gaxetas internas compatíveis com a classe de temperatura do material isolante do transformador;
- f) partes externas resistentes à umidade e corrosão.

O dispositivo deve estar posicionado na horizontal, na tampa do transformador com adaptador "L", observada a condição de carga máxima de emergência do transformador de 200%, não devendo, em nenhuma hipótese, dar vazão ao óleo expandido.

Deve ser posicionado também de forma a atender às seguintes condições:

- a) não ficar exposto a danos quando dos processos de içamento, carga e descarga do transformador;
- b) ser direcionado para o lado das buchas de baixa tensão.

6. CARACTERÍSTICAS CONSTRUTIVAS

6.1. Materiais Isolantes

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	23 de 97

Os materiais isolantes dos transformadores devem ser classe A (105°C), conforme ABNT NBR IEC 60085:2012

6.2. Características do Óleo Isolante

O óleo mineral isolante a ser utilizado nos transformadores antes do contato com o equipamento pode ser dos tipos A (naftênico) ou B (parafínico) de acordo com as resoluções vigentes da Agencia Nacional de Petróleo, Gás Natural e Biocombustível.

O óleo isolante, após contato com o equipamento, deve possuir características de acordo com a Tabela 17.

6.3. Tanque, Tampa e Radiadores

O tanque e a respectiva tampa devem ser em chapa de aço, conforme ABNT NBR 6650 e ABNT NBR 11888, com espessura de acordo com a Tabela 14.

O transformador deve ser projetado e construído para operar hermeticamente selado e suportar variações de pressão interna, bem como o seu próprio peso, quando levantado.

Todas as aberturas existentes na tampa devem ser providas de ressaltos construídos de maneira a evitar o acúmulo e/ou a penetração de água.

Os radiadores devem resistir aos ensaios previstos na ABNT NBR 5356 e na confecção destes podem ser usadas chapas ou tubos de aço, conforme ABNT NBR 5915 ou ABNT NBR 5590, respectivamente. Quando forem utilizadas chapas, estas devem possuir espessura mínima 1,2 mm e os tubos 1,5 mm.

Todas as soldas executadas na confecção do tanque devem ser feitas de modo contínuo e sempre do lado externo.

A critério da CHESP poderá ser exigido dispositivo para aplicação de lacre na tampa.

6.4. Localização e Dimensionamento dos Componentes

6.4.1. Buchas e Terminais

Devem ser de porcelana e estar de acordo com as normas da ABNT: NBR 5034, NBR 5435, NBR 5437 e NBR 5438.

As buchas de média tensão e baixa tensão devem ser localizadas conforme Desenhos 1 e 2.

Os terminais de ligação das buchas de BT dos transformadores monofásicos e trifásicos devem estar em conformidade com o disposto na Tabela 15.

A tampa deve ser provida de ressaltos para a montagem das buchas de AT.

As buchas de baixa tensão devem ser dimensionadas conforme Tabela 15.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	24 de 97

Os terminais devem ser estanhados de modo a permitir a utilização tanto de condutores de cobre quanto de alumínio; as respectivas dimensões e formas devem estar de acordo com os Desenhos 13 a 20.

Os transformadores monofásicos ligação primária fase-neutro devem ter a derivação H2T ligada internamente à parede do tanque, através de dispositivo desconectável e que assegure conexão sólida e confiável.

6.4.2. Orelhas de Suspensão

Em número de duas, conforme Desenhos 1 e 2. Devem ser soldadas na parede do tanque, de maneira que o cabo de aço utilizado na suspensão não atinja as bordas da tampa e ter resistência, dimensões e formato suficientes e adequados para permitir o içamento e a locomoção do transformador sem lhe causar danos, inclusive na pintura e nas buchas. As orelhas devem ser isentas de rebarbas.

6.4.3. Suportes para Fixação em Poste

Devem ter formato e dimensões conforme Desenho 3, suportar o ensaio prescrito no Anexo F e serem soldados ao tanque, conforme mostrado nos Desenhos 1 e 2.

O tipo 1 deve ser utilizado para transformadores monofásicos até 37,5 kVA e o tipo 2 para os trifásicos até 300 kVA.

Os suportes para transformadores com potências 225 e 300 kVA devem ser adequadamente reforçados conforme previsto no Desenho 4.

As abas laterais dos suportes e eventuais reforços não devem ser coincidentes com o eixo vertical das buchas X1 e X3, nos transformadores monofásicos e X0 e X3, nos trifásicos. Isso visa não prejudicar a instalação de conectores apropriados.

6.5. Juntas de Vedação

Devem ser feitas de borracha nitrílica com alto teor de acrilonitrila (39% - 41%) conforme ASTM D297, com as seguintes especificações:

Característica	Método de ensaio	Valores Nominais
Densidade	ASTM D 297	1,15 g/cm³ a 1,30 g/cm³
Dureza shore A	ASTM D 2240	(65 ± 5) pontos
Cinza	ASTM D 297	1 % a 3 %
Enxofre livre	ASTM D 1619	Negativo
Resistência à tração	ASTM D 412	(100 ± 10) kg/cm ²
Deformação permanente	-	70 h a 100 °C, máx. 15 % à compressão.
Envelhecimento	ABNT NBR 11407 ou ASTM	70 h em óleo isolante, a 100 °C, com:
	D 471	- Variação de volume = 0 % a 5 %
		- Variação de dureza = −10 a+ 5 pontos

Recomenda-se que os líquidos utilizados no ensaio de envelhecimento atendam aos requisitos da ANP para óleo mineral isolante e a ABNT NBR 15422 para óleo vegetal isolante.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	25 de 97	

6.6. Indicação do Nível do Óleo Isolante

Os transformadores devem ter uma linha indelével indicativa do nível de óleo isolante a 25°C, pintada em cor contrastante com a pintura interna, localizada na parte interna do tanque, acima dos terminais de baixa tensão.

6.7. Dispositivo de Aterramento

Deve ser um conector próprio para ligação de condutores de cobre com diâmetro entre 3,2 e 10,5 mm, conforme Desenho 5, preso por meio de um parafuso de rosca M12 x 1,75 no furo roscado do suporte para fixação em poste.

Nos transformadores trifásicos deve ser localizado no suporte superior, na parte lateral mais próxima de X0, conforme Desenho 2 e, nos monofásicos, na parte superior do suporte para fixação em poste, conforme Desenho 1.

6.8. Sistema de Fixação da Tampa

A tampa deve ser fixada ao tanque por meio de dispositivos adequados e imperdíveis. Deverá ser assegurada a continuidade elétrica entre a tampa e o tanque através de cordoalha de cobre estanhado.

6.9. Numeração dos Terminais e Derivações dos Enrolamentos de Média Tensão e dos Terminais do Enrolamento de Baixa Tensão

Os terminais devem ser marcados indelevelmente em baixo relevo e pintados com tinta preta notação MUNSELL N1; a altura dos caracteres não deve ser inferior a 30 mm, conforme Desenhos 1 e 2.

6.10. Fixação e Suspensão da Parte Ativa

A fixação da parte ativa nas paredes internas do tanque deve ser feita através de dispositivos laterais, de maneira a facilitar a retirada e recolocação desta no tanque e permitir a remoção da tampa do transformador sem que para tanto seja necessário retirar a parte ativa.

Os transformadores devem possuir no mínimo dois olhais para suspensão da parte ativa, localizados na parte superior do núcleo, de modo a manter, durante a suspensão, o conjunto na vertical.

Os dispositivos de fixação da parte ativa podem ser utilizados para suspensão da parte ativa desde que tenham resistência sufi ciente.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	26 de 97	

6.11. Estrutura de Apoio

A parte inferior do transformador deve ser provida de uma estrutura que assegure distância mínima de 10 mm entre a chapa do fundo e o plano de apoio do mesmo e que evite o afundamento do transformador sobre piso de madeira, quando transportado sem embalagem.

6.12. Dispositivo para Fixação de Para-raios

Os transformadores devem ser equipados com suporte apropriado para fixação de para-raios, soldado no tanque, equipado com parafuso, porca e arruela, conforme Desenhos 23 e 24.

O suporte deve ser posicionado na área indicada, não devendo interferir no processo de içamento do transformador.

O para-raios, quando instalado, deve obedecer às distâncias mínimas fase-fase e fase-terra constantes da Tabela 6.

6.13. Acabamento do Tanque e Radiadores

6.13.1. Generalidades

Todas as peças em aço carbono dos equipamentos devem ser fornecidas pintadas ou zincadas por imersão a quente.

Deve ser escolhido um sistema de revestimento protetor, anticorrosivo, entre aqueles definidos nas normas da ABNT: NBR 7831, NBR 7832 ou NBR 7833, recomendado para todas as atmosferas da classificação de meios corrosivos da ABNT NBR 6181.

O tanque e radiadores não devem apresentar impurezas superficiais.

As superfícies interna e externa do tanque devem receber um tratamento que lhes confira uma proteção eficiente contra corrosão e o material utilizado não deve afetar nem ser afetado pelo óleo. A preparação das superfícies e respectiva proteção contra corrosão devem ser executadas em conformidade com a ABNT NBR 11388.

A superfície externa deve receber um esquema de pintura tal que suporte os ensaios prescritos no Anexo D.

Os flanges das buchas, parafusos e porcas externas ao transformador não poderão receber pintura e devem ser galvanizados por imersão a quente.

Logo após a fabricação do tanque, as impurezas devem ser removidas através de processo químico ou jateamento abrasivo ao metal quase branco, padrão visual Sa 2 1/2 da norma SIS 05 5900.

Todas as superfícies a serem pintadas devem ser preparadas e pintadas de acordo com os procedimentos a seguir descritos.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	27 de 97

6.13.2. Pintura Interna

Deve ser aplicada uma demão de poliuretano alifático isocianato ou epóxi-poliamina, na cor branca, com espessura seca mínima de 40 □m.

6.13.3. Pintura Externa

Tinta de fundo: aplicar uma demão de epóxi-poliamida óxido de ferro, com espessura mínima da película 40 □m.

Acabamento: aplicar uma demão de poliuretano alifático com pigmento de dióxido de titânio, espessura mínima da película 80 □m, na cor cinza, referência Munsell N6.5.

Espessura total, mínima, da película seca 120 □m.

6.14. Massa do Transformador

A massa total unitária do transformador não pode ultrapassar 1.500 kg.

6.15. Resistência ao Momento de Torção

Os conectores devem suportar, sem avarias na rosca ou ruptura de qualquer parte dos componentes, os momentos de torção a seguir indicados:

Tipo da Rosca	Torque Mínimo	
	N x m	kgf x m
M10	16,70	1,70
M12	28,20	2,88
M16	76,00	7,75

6.16. Numeração de Série de Fabricação

O fabricante deverá puncioná-la nos seguintes locais:

- na placa de identificação;
- na orelha de suspensão direita, voltado para o lado de quem olha o transformador pela baixa tensão;
- na tampa do tanque;
- em uma das barras de aperto superiores do núcleo.

6.17. Numeração Patrimonial

Deve ser pintada em todos os transformadores a numeração patrimonial, a qual será fornecida pela CHESP quando da assinatura do CFM.

O Desenho 25 indica o local onde a referida numeração deve ser pintada, com o respectivo tamanho dos caracteres.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	28 de 97

A marcação deve ser indelével com tinta na cor vermelha, resistente às intempéries.

O fabricante deverá fornecer à CHESP, no momento da solicitação de inspeção de recebimento, uma relação com os dados constantes do Anexo K, para cada transformador do lote a ser apresentado. Após a inspeção dos equipamentos, a relação dos transformadores liberados, juntamente com os dados anteriormente referidos, deverá ser encaminhada, tanto impressa quanto no formato de planilha eletrônica ou txt, ao Departamento de Tecnologia e Qualidade de Materiais.

O não encaminhamento desta relação poderá acarretar o bloqueio no pagamento da respectiva fatura.

6.18. Parte Ativa

6.18.1. Núcleo

O núcleo deverá ser constituído de chapas planas de aço silício de grãos orientados, alta permeabilidade e baixas perdas, conforme ABNT NBR 9119 ou metal amorfo conforme ASTM A900 e ASTM A901. O tipo de construção deve permitir o reaproveitamento, em caso de manutenção, sem a necessidade do uso de máquinas ou ferramentas especiais.

As lâminas devem ser presas por uma estrutura apropriada que sirva como meio de centrar e firmar o conjunto núcleo-bobina ao tanque, de tal modo que o referido conjunto não tenha movimento em qualquer direção. Esta estrutura deve propiciar a retirada do conjunto do tanque.

Quando aplicável, os tirantes que atravessam as lâminas do núcleo devem ser isolados destas e aterrados.

Todas as porcas dos parafusos utilizados na construção do núcleo devem ser providas de travamento mecânico ou químico.

O núcleo e suas ferragens de fixação devem ser conectados ao tanque do transformador, através de um único ponto, utilizando-se como meio de ligação uma fita de cobre.

6.18.2. Enrolamentos

Os enrolamentos devem ser construídos com condutores de cobre ou alumínio e ser capazes de suportar, sem danos, os efeitos térmicos e mecânicos provenientes de correntes de curto-circuito externos, em conformidade com o item 8.5.11.

6.19. Ferragens

As ferragens devem ser zincadas por imersão a quente, conforme ABNT NBR 6323.

A espessura da camada deve estar conforme previsto na ABNT NBR 8159.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	29 de 97

7. CARACTERÍSTICAS ELÉTRICAS

7.1. Potências Nominais

As potências nominais, em kVA, para transformadores de distribuição de linhas aéreas, para uma elevação de temperatura enrolamento sobre o ambiente de 55°C são as seguintes:

7.1.1. Transformadores Monofásicos

10, 15, 25 e 37,5 kVA.

7.1.2. Transformadores Trifásicos

30, 45, 75, 112,5, 150, 225 e 300 kVA.

7.2. Níveis de Isolamento

Os níveis de isolamento e os espaçamentos mínimos no ar estão especificados nas Tabelas 5 e 6.

7.3. Derivações

Os transformadores deverão ter cinco derivações, conforme Tabela 8.

A derivação principal corresponde à de tensão mais elevada.

7.4. Frequência Nominal

A frequência nominal é 60 Hz.

7.5. Perdas, Corrente de Excitação e Impedância de Curto-Circuito (a 75°C)

Os valores médios de perdas e correntes de excitação do lote devem ser garantidos pelo fabricante em sua proposta e estar de acordo com as Tabelas 10 a 13.

Os valores individuais não devem ultrapassar os garantidos na proposta, observadas as tolerâncias especificadas no item 8.3.1.

A impedância de curto-circuito deve corresponder aos valores prescritos nas Tabelas 10 a 13, observadas as tolerâncias especificadas no item 8.3.1.

7.6. Diagramas Fasoriais dos Transformadores

7.6.1. Monofásicos - Polaridade Subtrativa

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	30 de 97

do equ	o máxima uipamento (kV)	Primário	Secundário com três buchas
Fase	15/ $\sqrt{3}$	Н1	Х1
е	$36,2/\sqrt{3}$		X2
neutro	30,2/√3	H2T	X3

7.6.2. Trifásicos

Tensão má do equipan (kv)		Primário	Secundário
Fase-fase	15	H2	X2 X1 X0
rase-lase	36,2	Н1 Н3	X3

7.7. Diagramas de Ligações dos Transformadores

Devem ser conforme Desenhos 6 e 7.

As figuras são orientativas, exceção feita à numeração das derivações.

7.8. Tensão de Radiointerferência (TRI)

Os valores máximos de tensão de radiointerferência (TRI), quando o transformador é submetido a 1,1 vezes o valor da tensão da maior derivação, medido de acordo com a ABNT NBR 15121 são os indicados na Tabela 9.

7.9 Nível de Ruído

O transformador deve atender aos seguintes níveis máximos de ruído conforme abaixo, quando ensaiado conforme a ABNT NBR 7277.

Nível máximo de ruído	Potência nominal do transformador equivalente com dois enrolamentos
(dB)	(kVA)
48	1 a 50
51	51 a 100
55	101 a 300

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	31 de 97

8. INSPEÇÃO E ENSAIOS

8.1. Generalidades

- a) Os transformadores devem ser submetidos a inspeção e ensaios na fábrica, de acordo com esta norma e com as normas da ABNT aplicáveis, na presença de inspetores credenciados pela CHESP, devendo a CHESP ser comunicada pelo fornecedor com pelo menos 15 (quinze) dias de antecedência se fornecedor nacional e 30 (trinta) dias se fornecedor estrangeiro, das datas em que os lotes estiverem prontos para inspeção final, completos com todos os acessórios.
- b) A CHESP reserva-se o direito de inspecionar e testar os transformadores e o material utilizado durante o período de sua fabricação, antes do embarque ou a qualquer tempo em que julgar necessário. O fabricante deve proporcionar livre acesso do inspetor aos laboratórios e às instalações onde o equipamento em questão estiver sendo fabricado, fornecendo-lhe as informações solicitadas e realizando os ensaios necessários. O inspetor poderá exigir certificados de procedências de matérias primas e componentes, além de fichas e relatórios internos de controle.
- c) O fornecedor deve apresentar, para aprovação da CHESP, o seu Plano de Inspeção e Testes, que deverá conter as datas de início da realização de todos os ensaios, os locais e a duração de cada um deles, sendo que o período para inspeção deve ser dimensionado pelo proponente de tal forma que esteja contido nos prazos de entrega estabelecidos na proposta de fornecimento.
- O plano de inspeção e testes deve indicar os requisitos de controle de qualidade para utilização de matérias primas, componentes e acessórios de fornecimento de terceiros, assim como as normas técnicas empregadas na fabricação e inspeção dos equipamentos.
- d) Certificados de ensaio de tipo para equipamento de características similares ao especificado, porém aplicáveis, podem ser aceitos desde que a CHESP considere que tais dados comprovem que o equipamento proposto atende ao especificado.
- Os dados de ensaios devem ser completos, com todas as informações necessárias, tais como métodos, instrumentos e constantes usadas e indicar claramente as datas nas quais os mesmos foram executados. A decisão final, quanto à aceitação dos dados de ensaios de tipo existentes, será tomada posteriormente pela CHESP, em função da análise dos respectivos relatórios. A eventual dispensa destes ensaios somente terá validade por escrito.
- e) O fabricante deve dispor de pessoal e de aparelhagem, próprios ou contratados, necessários à execução dos ensaios (em caso de contratação deve haver aprovação prévia por parte da CHESP).
- f) Todos os instrumentos e aparelhos de medição, máquinas de ensaios, etc., devem ter certificado de aferição emitido por instituições acreditadas pelo INMETRO, válidos por um período máximo de um ano. Por ocasião da inspeção, devem estar ainda dentro deste período, podendo acarretar desqualificação do laboratório o não cumprimento dessa exigência.
- g) O fabricante deve assegurar ao inspetor da CHESP o direito de familiarizar-se, em detalhes, com as instalações e os equipamentos a serem utilizados, estudar todas as instruções e desenhos, verificar calibrações, presenciar ensaios, conferir resultados e, em caso de dúvida, efetuar novas inspeções e exigir a repetição de qualquer ensaio.
- h) A aceitação dos equipamentos e/ou a dispensa de execução de qualquer ensaio:
- não exime o fabricante da responsabilidade de fornecê-lo de acordo com os requisitos desta norma;
- não invalida qualquer reclamação posterior da CHESP a respeito da qualidade do material e/ou da fabricação.

Em tais casos, mesmo após haver saído da fábrica, os transformadores podem ser inspecionados e submetidos a ensaios, com prévia notificação ao fabricante e, eventualmente, em sua presença. Em caso de qualquer discrepância em relação às exigências desta norma, eles podem ser rejeitados e sua reposição será por conta do fabricante.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	32 de 97

i) Após a inspeção dos transformadores, o fabricante deve encaminhar à CHESP, por lote ensaiado, um relatório completo dos ensaios efetuados, incluindo oscilogramas, em três vias, devidamente assinado por ele e pelo inspetor credenciado pela concessionária.

Esse relatório deverá conter todas as informações necessárias para o seu completo entendimento, tais como: métodos, instrumentos, constantes e valores utilizados nos ensaios e os resultados obtidos.

- j) Todas as unidades de produto rejeitadas, pertencentes a um lote aceito, devem ser substituídas por unidades novas e perfeitas, por conta do fabricante, sem ônus para a CHESP, sendo o fabricante responsável pela recomposição de unidades ensaiadas, quando isto for necessário, antes da entrega à CHESP.
- k) Nenhuma modificação no transformador deve ser feita "a posteriori" pelo fabricante sem a aprovação da CHESP. No caso de alguma alteração, o fabricante deve realizar todos os ensaios de tipo, na presença do inspetor da CHESP, sem qualquer custo adicional.
- I) O custo dos ensaios deve ser por conta do fabricante.
- m) A CHESP reserva-se o direito de exigir a repetição de ensaios em transformadores já aprovados. Neste caso, as despesas serão de sua responsabilidade se as unidades ensaiadas forem aprovadas na segunda inspeção, caso contrário correrão por conta do fabricante.
- n) Os custos da visita do inspetor da CHESP (locomoção, hospedagem, alimentação, homem-hora e administrativos) correrão por conta do fabricante se:
- na data indicada na solicitação de inspeção o equipamento não estiver pronto;
- o laboratório de ensaio não atender às exigências de 8.1.e até 8.1.f;
- o material fornecido necessitar de acompanhamento de fabricação ou inspeção final em subfornecedor, contratado pelo fornecedor, em localidade diferente da sua sede;
- o material necessitar de reinspeção por motivo de recusa;
- os ensaios de recebimento e/ou tipo forem efetuados fora do território brasileiro.

8.2. Ensaios de Rotina

Os ensaios de rotina são aqueles executados em fábrica, durante o processo produtivo, cabendo à CHESP o direito de designar um inspetor para acompanhá-los.

Nota:

Todos os ensaios de rotina, recebimento e tipo devem ser executados em conformidade com o previsto na ABNT NBR 5356, Partes 1 a 5.

8.2.1. Inspeção Geral

Deve ser executada conforme amostragem indicada na Tabela 16 e consiste dos seguintes ensaios:

- verificação das características dimensionais e dos componentes;
- inspeção visual, com abertura dos transformadores e levantamento da parte ativa.
- 8.2.2. Ensaios Elétricos, Estanqueidade e Verificação do Funcionamento dos Acessórios

Os ensaios a seguir relacionados devem ser executados em todas as unidades da produção e seus resultados apresentados ao inspetor da CHESP:

- a) resistência elétrica dos enrolamentos;
- b) relação de transformação;
- c) resistência do isolamento;
- d) polaridade;
- e) deslocamento angular e sequência de fases;
- f) perdas (em vazio e em carga);

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	33 de 97

- g) corrente de excitação;
- h) impedância de curto-circuito;
- i) ensaios dielétricos:
- tensão suportável à frequência industrial;
- tensão induzida de curta duração;
- j) resistência de isolamento;
- k) estanqueidade;
- I) verificação do funcionamento dos acessórios.

8.3. Ensaios de Recebimento

Os ensaios de recebimento são os seguintes:

- a) todos os ensaios relacionados em 8.2;
- b) verificação do esquema de pintura;
- c) galvanização;
- d) ensaios do líquido isolante:
- rigidez dielétrica;
- teor de água;
- fator de perdas dielétricas ou fator de dissipação;
- tensão interfacial;
- índice de neutralização.

Os planos de amostragem e os critérios de aceitação e rejeição estão indicados na Tabela 16.

Os ensaios de tensão suportável à frequência industrial e tensão induzida deverão ser realizados em todas as unidades na presença do inspetor da CHESP.

8.3.1. Amostragens e Tolerâncias nos Resultados dos Ensaios

Para os ensaios de resistência ôhmica dos enrolamentos, relação de transformação, resistência de isolamento, polaridade, deslocamento angular e sequência de fases, o fabricante deverá apresentar ao inspetor da CHESP as folhas de ensaios de cada unidade.

Os resultados dos ensaios com valores garantidos (perdas em vazio, perdas em carga, corrente de excitação e impedância de curto-circuito), também deverão constar das folhas de ensaio de cada unidade, indicando os valores máximos, médios e mínimos encontrados previamente no lote.

Em todos os ensaios anteriormente referidos o inspetor confrontará os resultados fornecidos pelo fabricante numa amostragem mínima de 10% do lote, escolhida aleatoriamente.

Nos ensaios com valor garantido, as tolerâncias são as seguintes:

- perdas em vazio: + 10% do valor garantido, porém a média dos valores verificados no lote não poderá ser superior ao valor garantido;
- perdas totais: + 6% do valor garantido, porém a média dos valores verificados no lote não poderá ser superior ao valor garantido;
- corrente de excitação: + 20% do valor garantido, porém a média dos valores verificados no lote não poderá ser superior ao valor garantido;
- impedância de curto-circuito: ☐ 7,5% do valor garantido;
- relação de transformação: □ 0,5%.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	34 de 97

8.4. Ensaios de Tipo

Serão especificados no CFM os ensaios desejados e o número de unidades da encomenda sobre as quais devem ser executados; cabendo à CHESP o direito de designar um inspetor para assisti-los.

Para cada um dos ensaios seguintes o inspetor deverá escolher, aleatoriamente, as unidades que serão ensaiadas.

Os ensaios de tipo são os seguintes:

- a) todos aqueles especificados em 8.3;
- b) medição do fator de dissipação (tg δ) da isolação (fator de potência do isolamento);
- c) elevação de temperatura;
- d) tensão suportável de impulso atmosférico;
- e) nível de ruído audível;
- f) nível de tensão de radiointerferência;
- g) suportabilidade a curto-circuito;
- h) equilíbrio de tensão em transformadores monofásicos;
- i) resistência mecânica dos suportes do transformador.

Se forem exigidos ensaios além dos mencionados, o método de ensaio deve constituir objeto de acordo entre fabricante e CHESP.

8.5. Descrição dos Ensaios

Os ensaios devem ser baseados nas prescrições da ABNT NBR 5356 partes 1 a 5.

8.5.1. Impedância de Curto-Circuito e Perdas em Carga

Devem ser medidas, para um par de enrolamentos, à frequência nominal, aplicando-se uma tensão praticamente senoidal aos terminais de um enrolamento, mantendo-se os do outro enrolamento curto-circuitados. A corrente de alimentação deve ser pelo menos igual a 50% da nominal. As medidas devem ser feitas rapidamente para que as elevações de temperatura não introduzam erros significativos. A diferença de temperatura do óleo entre as partes superior e inferior do tanque deve ser suficientemente pequena para permitir a determinação da temperatura média com a precisão requerida. O valor obtido deve ser corrigido para a temperatura de referência.

O valor relativo é também igual ao quociente da tensão aplicada durante o ensaio de curtocircuito para se fazer circular a corrente nominal (ou corrente de derivação) pela tensão nominal (ou tensão de derivação). Esta tensão corresponde à tensão de curto-circuito do par de enrolamentos. Ela é normalmente expressa em porcentagem.

8.5.2. Resistência Elétrica dos Enrolamentos

A resistência elétrica dos enrolamentos deve ser medida, em corrente contínua, na derivação correspondente à tensão mais elevada e corrigida para a temperatura de referência.

No caso de transformadores polifásicos esse valor deve ser dado por fase.

Serão indicadas as derivações adicionais para as quais o fabricante deve medir a resistência dos enrolamentos.

O transformador com óleo deve ser deixado desenergizado durante pelo menos 3 h, depois se determina a temperatura média do óleo e considera-se que a do enrolamento é igual a do óleo. Este valor é adotado como média das temperaturas do óleo nas partes superior e inferior do tanque (topo e fundo do tanque).

Quando se mede a resistência a frio, com o propósito de determinar a elevação de temperatura, é necessário envidar esforços especiais para determinar com precisão a temperatura

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	35 de 97

media do enrolamento. Portanto, a diferença entre as temperaturas do óleo nas partes superior e inferior deve ser pequena.

8.5.3. Medição da Relação de Transformação, Verificação da Polaridade, Deslocamento Angular e Sequência de Fases.

O ensaio de relação de transformação deve ser feito em todas as derivações. As tensões devem ser sempre dadas para o transformador funcionando em vazio.

Deve-se verificar a polaridade dos transformadores monofásicos e o esquema de ligação para os trifásicos, por meio do levantamento do diagrama fasorial.

Os transformadores monofásicos devem ter polaridade subtrativa.

8.5.4. Resistência do Isolamento

A resistência do isolamento deve ser medida antes dos ensaios dielétricos. Este ensaio não constitui critério para aprovação ou rejeição do transformador.

8.5.5. Perdas em Vazio e Corrente de Excitação

Devem ser medidas em um dos enrolamentos, na derivação principal, à tensão e frequência nominais, com o outro enrolamento em circuito aberto.

O fabricante deve declarar o valor percentual da corrente de excitação, referido à corrente nominal do enrolamento em que é medida.

No caso de encomenda de dois ou mais transformadores iguais, a mesma tolerância deve ser aplicada ao transformador individualmente, não podendo, porém, a média dos valores de todos os transformadores exceder o valor declarado pelo fabricante.

8.5.6. Estanqueidade e Resistência à Pressão

O transformador completo, cheio de óleo e com todos os acessórios, deve ser ensaiado para se verificar a vedação das gaxetas, conexões roscadas, etc. Neste ensaio, que deve ser realizado após os ensaios dielétricos, os transformadores devem suportar uma pressão manométrica, de 0,07 MPa, durante 1 hora, sem vazamento.

Nota:

Caso o fabricante realize este ensaio em todas as unidades, antes dos ensaios elétricos, ele pode ser realizado após os mesmos, em um número de unidades conforme Tabela 16.

8.5.7. Fator de Potência do Isolamento

O fator de potência do isolamento deve ser medido pelo método do Watt por Volt-Ampère, ou pelo método de ponte especial, entre os terminais dos enrolamentos e entre estes e a terra, conforme prescrito na NBR 5356-1. Este ensaio deve preceder os ensaios dielétricos e ser repetido após os mesmos, para efeito de comparação com os valores inicialmente obtidos.

8.5.8. Ensaios do Óleo Isolante

O óleo mineral isolante deve ser ensaiado de acordo com os métodos indicados na Tabela 17.

Antes da inspeção de cada lote, o fabricante deve fornecer ao inspetor da CHESP um relatório técnico contendo as seguintes informações:

- classificação do tipo de óleo mineral do tipo A (base naftênica) e tipo B (base parafínica) bem como a sua procedência;
- resultados de todos os ensaios indicados na Tabela 17, realizados por laboratórios conforme item 9.1.1; os quais devem estar de acordo com os valores indicados nas referidas tabelas.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	36 de 97

Nota:

Caso o fabricante não apresente esse relatório, todos os ensaios indicados na Tabela 17 devem ser realizados em uma amostra retirada do lote, sem ônus para a CHESP, devendo a inspeção ser iniciada somente após a análise dos resultados dos mesmos.

Em um número de unidades escolhidas aleatoriamente pelo inspetor da CHESP, conforme Tabela 16, devem ser retiradas amostras do óleo isolante para realização dos ensaios previstos no item 8.3.d.

8.5.9. Elevação de Temperatura

Este ensaio deve ser executado conforme as prescrições contidas na ABNT NBR 5356-2.

A determinação das temperaturas dos enrolamentos deve ser feita pelo método da variação da resistência e da elevação da temperatura do topo do óleo, em relação à temperatura ambiente.

Durante o ensaio o transformador não é submetido à tensão nominal e a corrente nominal simultaneamente, mas as perdas totais calculadas, previamente obtidas pela determinação das perdas em carga, a temperatura de referência e das perdas em vazio.

O ensaio de elevação de temperatura deve ser realizado na derivação de maior corrente, alimentando-se o transformador do lote que apresentou as maiores perdas totais, de forma a se obter o seguinte:

onde:

WTE = perdas totais obtidas durante o ensaio de elevação de temperatura;

WTM = perdas totais da derivação de maior perda, com 100% da tensão nominal da derivação (U_n);

 W_0 = perdas em vazio com 100% x U_n :

 W_{01} = perdas em vazio com 105% x U_n .

O objetivo do ensaio é:

- estabelecer a elevação de temperatura do topo do óleo em regime permanente com dissipação das perdas totais;
- estabelecer a elevação de temperatura média dos enrolamentos à corrente nominal com a elevação de temperatura do topo do óleo determinada acima.

Nota:

Se em lotes subsequentes do mesmo CFM forem encontrados transformadores de mesmas características, com perdas totais superiores às do transformador anteriormente submetido ao ensaio de elevação de temperatura, o referido ensaio deve ser repetido, sem ônus para a CHESP, no transformador de maiores perdas totais.

8.5.10. Ensaios Dielétricos

8.5.10.1. Tensão Máxima do Equipamento e Níveis de Isolamento.

Os valores normalizados de U_n estão relacionados na Tabela 5.

8.5.10.2. Requisitos Gerais

Os ensaios dielétricos devem, preferencialmente, ser feitos nas instalações do fornecedor à temperatura ambiente.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	37 de 97	

Os ensaios de tensão suportável à frequência industrial e induzida devem ser feitos após os ensaios de impulso atmosférico.

Os transformadores devem estar completamente montados como em funcionamento.

Buchas e comutadores de derivações devem ser especificados, construídos e ensaiados de acordo com as normas correspondentes. A execução satisfatória dos ensaios dielétricos, com os componentes anteriormente citados montados no transformador, constitui uma verificação da aplicação e instalação correta destes. Se, nos ensaios dielétricos, acontecer uma falha e for constatado que o fato ocorreu em uma bucha, esta poderá ser substituída, temporariamente, por outra e dada continuidade aos ensaios do transformador.

8.5.10.3. Tensão Suportável à Frequência Industrial

O transformador deve suportar os ensaios de tensão suportável à frequência industrial, durante 1 minuto, no valor especificado, sem que se produzam descargas disruptivas e sem que haja evidência de falha, sendo que em enrolamentos com isolamento uniforme, deve ser aplicada, entre os terminais do enrolamento e a terra, a tensão de ensaio correspondente ao nível de isolamento especificado, de acordo com a Tabela 5.

8.5.10.4. Tensão Induzida

Os transformadores devem ser capazes de suportar o ensaio de tensão induzida, sem que se produzam descargas disruptivas e sem que haja evidência de falha. A duração do ensaio deve ser de 7.200 ciclos, com frequência de ensaio entre 120 e 480 Hz, sendo que:

- o transformador deve ser excitado, de preferência, como será em funcionamento normal; os trifásicos por um sistema trifásico de tensões; o terminal de neutro, quando houver, pode ser ligado à terra:
- deve ser desenvolvida uma tensão igual ao dobro da respectiva tensão de derivação utilizada no ensaio, porém, a tensão de ensaio entre os terminais de linha para transformadores trifásicos ou a tensão entre linha e massa para transformadores monofásicos não deve ultrapassar o valor correspondente ao nível de isolamento especificado na Tabela 5.

Notas:

- 1) Transformadores monofásicos, com enrolamento com terminal aterrado internamente, mesmo com isolamento uniforme, devem ser ensaiados como se tivessem isolamento progressivo. Neste caso, o ensaio deve ser realizado com frequência superior a 196 Hz e duração de 7.200 ciclos. O transformador deve ser excitado através da baixa tensão de maneira a se obter 3,46 x Un + 1.000 V no enrolamento de média tensão, onde Un é a tensão nominal desse enrolamento.
- 2) Para transformadores classe 36,2 kV o valor da tensão de ensaio deve ser limitado a 50 kV.
- 3) O transformador deve estar aterrado durante a realização do ensaio.

8.5.10.5. Ensaio de Tensão Suportável de Impulso Atmosférico

Salvo especificação para se fazer o ensaio com o transformador ligado em uma determinada derivação, recomenda-se utilizar, durante o mesmo, as derivações extremas e a principal, utilizando-se uma derivação diferente para cada uma das três fases de um transformador trifásico.

Os ensaios de impulso atmosférico devem ser feitos com impulsos plenos e cortados.

Os impulsos plenos devem ter a seguinte forma de onda 1,2 \Box s ± 30%/50 \Box s ± 20%.

Os impulsos cortados devem ser impulsos plenos normalizados, cortados entre 2 e 6 \subseteq s.

O valor de pico para o impulso cortado deve ser de 1,1 vez o impulso pleno.

Para transformadores imersos em óleo deve-se usar polaridade negativa.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	38 de 97	

Os circuitos de medição e ensaio não devem ser alterados durante a calibração e ensaio.

O ensaio de impulso deve ser feito aplicando-se em todos os terminais de linha dos enrolamentos sob ensaio e na ordem mencionada:

- um impulso pleno normalizado com valor reduzido (entre 50 e 75% do valor pleno especificado);
- um impulso pleno normalizado com o valor especificado;
- um ou mais impulsos cortados com valor reduzido;
- dois impulsos cortados com o valor especificado;
- dois impulsos plenos normalizados com o valor especificado.

Havendo descarga de contorno no circuito ou falha no registrador oscilográfico, deve ser desprezada a aplicação que ocasionou a falha e feita outra.

Registros oscilográficos devem ser feitos para servir de método de detecção de falhas.

A determinação dos resultados de ensaio é baseada principalmente na comparação entre os oscilogramas de impulsos com valores reduzidos e valores especificados de tensão. Essa comparação é facilitada pela seleção de um valor adequado do atenuador, de forma a se obterem oscilogramas de amplitudes aproximadamente iguais.

O impulso pleno normalizado com valor reduzido serve para comparação com os impulsos plenos normalizados com o valor especificado.

Os impulsos cortados com valor reduzido servem para comparação com os impulsos cortados com valor especificado. Os impulsos plenos normalizados com valor especificado servem para aumentar eventuais danos causados pelas aplicações, tornando-os mais patentes ao exame dos oscilogramas.

O transformador deve suportar os ensaios de impulso atmosférico, sem que se produzam descargas disruptivas e sem que haja evidência de falhas.

A ausência de diferenças significativas entre os transitórios de corrente e tensão registrados com impulso de valor reduzido e aqueles com impulso pleno constitui evidência de que o isolamento suportou o ensaio.

8.5.11 Suportabilidade a Curto-Circuito

O ensaio deve ser realizado em transformador novo, completamente montado com seus equipamentos e acessórios que deve ser construído para resistir sem danos, os efeitos térmicos e dinâmicos das correntes de curto-circuito externos.

Este ensaio deverá ser executado de acordo com a ABNT NBR 5356-5.

Antes da realização deste ensaio o transformador deve ser submetido aos ensaios de rotina, conforme especificado na ABNT NBR 5356-1.

A resistência e a reatância devem ser medidas, na derivação na qual o ensaio será executado, com uma precisão igual ou superior a ± 0,2%.

Antes do início do ensaio a temperatura média dos enrolamentos deve estar, preferencialmente, entre 10 e 40°C.

8.5.11.1. Capacidade Térmica de Suportar Curtos-Circuitos

A capacidade térmica de suportar curto-circuito é demonstrada por cálculo, conforme descrito a seguir.

Cálculo do valor eficaz da corrente de curto-circuito simétrica (I) para transformadores trifásicos com dois enrolamentos:

onde:

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	39 de 97	

$$Z_{s}=rac{U_{s}^{2}}{S}$$
, em ohms por fase, (ligação estrela equivalente)

 $Z_{s=}$ impedância de curto-circuito do sistema, em ohms;

 $U_{s=}$ tensão nominal fase-fase do sistema, em kV;

S = potência aparente trifásica de curto-circuito do sistema, em MVA;

U e Z_t são definidos como segue:

a) para a derivação principal:

 $U = tensão nominal entre fases \ U_n$ do enrolamento considerado, em kV;

 Z_{t} = impedância de curto-circuito do transformador, referida ao enrolamento considerado e calculada como segue:

$$\mathbf{Z_t} = \frac{\mathbf{Z_t} \times \mathbf{N_t}^2 \mathbf{I}}{1000}$$
, em ohms por fase, (ligação estrela equivalente)

onde:

 Z_t = é a impedância de curto-circuito, em porcentagem, sob corrente e frequência nominais, na temperatura de referência;

S_n = potência nominal trifásica do transformador, em MVA;

b) para derivações diferentes da principal:

U = é a tensão de derivação do enrolamento, na derivação considerada, em kV;

 Z_{t} = é a impedância de curto-circuito do transformador, referida ao enrolamento e à derivação considerados, em ohms por fase.

A impedância do sistema deve ser desprezada nos cálculos das correntes de curto-circuito se for igual ou inferior a 5% do valor da impedância de curto-circuito do transformador.

8.5.11.2. Duração da Corrente de Curto-Circuito

A duração da corrente de curto-circuito simétrica I, a ser utilizada no cálculo da capacidade térmica de suportar curtos-circuitos é de 2 segundos, salvo especificação diferente.

8.5.11.3. Máximo Valor Admissível da Temperatura Média de Cada Enrolamento

O valor da temperatura média θ 1 de cada enrolamento, depois de percorrido por uma corrente de curto-circuito simétrica I, com valor e duração especificados em 8.5.11.1 e 8.5.11.2, respectivamente, não deve exceder o valor máximo indicado na Tabela 3, para qualquer posição de derivação.

A temperatura inicial do enrolamento θ_0 a ser utilizada nas equações 4 e 5 deve corresponder à soma da máxima temperatura ambiente admissível com a elevação de temperatura do enrolamento nas condições nominais, medida pelo método de variação da resistência. Se a elevação de temperatura medida não estiver disponível, então a temperatura inicial do enrolamento θ_0 deve corresponder à soma da máxima temperatura ambiente admissível com a elevação de temperatura permitida pela isolação do enrolamento.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	40 de 97	

8.5.11.4. Cálculo da Temperatura θ 1

A temperatura média θ 1, atingida pelo enrolamento após um curto-circuito, pode ser calculada pela fórmula:

$$Q = Q + \frac{2x(Q+23)}{10600}$$
, para enrolamento de cobre. (4)

$$Q = Q + \frac{2x(Q+22)}{4579C}, \text{ para enrolamento de alumínio. (5)}$$

onde:

 θ_0 = temperatura inicial do enrolamento, em °C;

j = densidade da corrente de curto-circuito do enrolamento considerado, em A/mm², baseada no valor eficaz da corrente de curto-circuito simétrica;

t = duração, em segundos;

Nota:

As equações 4 e 5 são baseadas em condições adiabáticas e são válidas apenas por pouco tempo de duração, não excedendo 10 s. Os coeficientes são baseados nas propriedades dos materiais, conforme definido na ABNT NBR 5356-5.

O fabricante deve enviar para cada ensaio de curto-circuito, a memória de cálculo referente à máxima temperatura média atingida pelo enrolamento após um curto-circuito de 2 segundos, com o valor de corrente indicado em 5.4.2.

8.5.11.5. Capacidade de Resistir aos Efeitos Dinâmicos de Curtos-Circuitos

a) Condições de Ensaio:

O ensaio de curto-circuito deve ser executado alimentando-se o transformador pelo enrolamento de média tensão e efetuando-se o curto-circuito no enrolamento de baixa tensão 0,5 s após a sua energização. Antes da aplicação do curto-circuito, a tensão nos terminais de média tensão deve estar compreendida entre 100% e 115% da tensão nominal da derivação que estiver sendo ensaiada.

b) Corrente de Ensaio:

A corrente de ensaio deve ser ajustada por meio de resistências e reatâncias inseridas no secundário do transformador de maneira que a relação X/R do circuito seja igual à do transformador. O valor simétrico dessa corrente é dado em 5.4.2.

O ângulo de fechamento deve ser ajustado de maneira que a corrente de crista esteja dentro da tolerância prevista na ABNT NBR 5356-5.

- c) Número de Aplicações
- Transformador Monofásico

Para os transformadores monofásicos devem ser feitas três aplicações com duração de 0,5 s em cada ensaio. Cada aplicação deve ser efetuada em uma posição diferente do comutador de derivações, da seguinte forma: uma na posição da derivação principal, outra na posição correspondente à menor relação de tensão de derivação e uma em posição escolhida a critério do inspetor.

- Transformador Trifásico

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	41 de 97	

Para transformadores trifásicos devem ser feitas nove aplicações (três por fase) com duração de 0,5 s em cada ensaio.

Para cada fase com derivações devem ser efetuadas aplicações numa posição diferente do comutador de derivações, como segue: em uma das fases externas fazer três aplicações na posição correspondente à menor relação de transformação de derivação, para a outra fase externa mais três aplicações, ficando a critério do inspetor a escolha da derivação na qual serão aplicadas; para a fase intermediária três aplicações na posição da derivação principal.

A tolerância no tempo de aplicação é de □ 10%.

8.5.11.6. Detecção de Defeitos e Avaliação dos Resultados do Ensaio de Curto-Circuito

Durante cada aplicação (incluindo aplicações preliminares) devem ser levantados os seguintes registros oscilográficos:

- tensão aplicada aos terminais do transformador;
- corrente no enrolamento alimentado;
- corrente no enrolamento secundário (serve para indicar a ocorrência de saturação do núcleo);
- corrente do tanque para terra (serve para indicar a ocorrência de defeitos internos).

Nota:

Podem ser usados métodos adicionais de detecção de defeitos. Entre esses estão o uso de bobinas para medição de fluxo parasita radial e ruídos, medição da corrente de excitação e aplicação de impulso de baixa tensão.

Após cada aplicação examinar os oscilogramas. Diferenças entre os oscilogramas registrados antes e depois dos ensaios podem servir como critério para detecção de defeitos. É importante observar, durante as aplicações sucessivas, possíveis mudanças na reatância medida após cada ensaio, que podem indicar mudança progressiva ou tendência a um valor estável.

Concluídos os ensaios o transformador deve ser inspecionado. Os resultados das medições da reatância de curto-circuito e os oscilogramas levantados durante as diferentes etapas dos ensaios devem ser examinados com vistas à indicação de variação da impedância de curto-circuito.

Os ensaios dielétricos de rotina devem ser repetidos com 100% da tensão de ensaio correspondente ao nível de isolamento especificado.

Considera-se que um transformador suportou o ensaio de curto-circuito se:

- os ensaios de rotina forem repetidos com sucesso;
- os resultados dos ensaios de curto-circuito, incluindo as respectivas medições e a inspeção da parte ativa fora do tanque não revelarem defeitos;
- a parte ativa do transformador após ser retirada do tanque para inspeção do núcleo e enrolamentos, não revelar defeitos visíveis, tais como: deformação dos enrolamentos, deslocamento das bobinas, chapas, conexões ou estruturas suportes, mudanças de posição de ligações que possam colocar em perigo a operação segura do transformador, embora este tenha suportado os ensaios de rotina;
- nenhum indício de descarga elétrica interna for encontrado;
- a diferença entre a reatância de curto-circuito medida após os ensaios e a medida no estado original não for superior a:
- 2% para transformadores com enrolamentos circulares concêntricos e não circulares tipo panqueca, contudo, quando o condutor do enrolamento de baixa tensão for de fita metálica, mediante acordo entre fabricante e CHESP, poderão ser adotados valores mais elevados, porém não superiores a 4% para transformadores com impedância de curto-circuito igual ou superior a 3%; se o último valor for inferior a 3%, o limite de 4% anteriormente referido deve ser objeto de acordo entre fabricante e CHESP;

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	42 de 97

- 7,5% para transformadores com enrolamentos não circulares concêntricos, com impedância de curto-circuito igual ou superior a 3%;

O valor de 7,5% pode ser reduzido, mediante acordo entre fabricante e CHESP, porém não a valor inferior a 4%.

Nota:

Para transformadores com bobinas não circulares concêntricas, com impedância de curto-circuito inferior a 3%, a variação na reatância não pode ser especificada de forma genérica; para esses transformadores, o conhecimento prático de certos tipos de construção conduz à aceitação de uma variação de (22,5 % - $5U_z$)%, sendo U_z a impedância de curto-circuito em percentagem.

8.5.12. Nível de Ruído Audível

Os níveis de ruído produzidos por transformadores não devem exceder aqueles especificados na Tabela 7, devendo o ensaio ser conduzido de acordo com o prescrito na ABNT NBR 7277.

8.5.13. Nível de Tensão de Radiointerferência

Os níveis de tensão de radiointerferência produzidos por transformadores não devem ultrapassar os limites estabelecidos na Tabela 9, quando medidos de acordo com a ABNT NBR 7875 e ABNT NBR 7876.

8.5.14. Equilíbrio de Tensão em Transformadores Monofásicos

Este ensaio deve ser efetuado em transformadores monofásicos com ligação secundária a três fios.

Na situação de desequilíbrio de carga, conforme Desenho 22, o transformador deve ser alimentado com tensão nominal e aplicada carga equivalente à metade da potência nominal do transformador, entre terminais correspondentes à metade do enrolamento secundário. A diferença de tensão medida entre os terminais com carga e aqueles em vazio, não deve exceder 3 V.

8.5.15. Verificação da Resistência Mecânica dos Suportes de Fixação do Transformador O ensaio deve ser executado conforme indicado no Anexo E.

8.5.16. Verificação do Esquema de Pintura

O ensaio deve ser realizado em conformidade com o anexo D. O número de transformadores a serem ensaiados está estipulado na Tabela 16.

8.5.17. Ensaios do Revestimento de Zinco

Devem ser efetuados de acordo com as seguintes normas da ABNT: NBR 7398, NBR 7399 e NBR 7400, em um número de amostras escolhidas aleatoriamente conforme Tabela 16.

8.5.18. Dureza das Juntas de Vedação

Deve ser realizado conforme ABNT NBR 7318 ou ASTM D2240, em um número de corposde-prova conforme Tabela 16. Os valores obtidos devem atender ao especificado no Item 6.5.

8.5.19. Resistência das Juntas de Vedação ao Óleo Isolante

Devem ser preparados, a critério do inspetor da CHESP, tantos corpos-de-prova quantos forem necessários, para execução deste ensaio.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	43 de 97	

Os corpos-de-prova devem ser imersos em óleo isolante a 100°C durante 70 horas, conforme ABNT NBR 11407 ou ASTM D471. Após o ensaio são admitidas as seguintes variações em relação ao valor obtido antes do ensaio:

- variação da dureza: (- 10 a + 5) shore A;
- variação de volume: (0 a + 25%).

Para os materiais cujos formatos e dimensões não permitam a retirada de corpos-de-prova conforme as normas citadas, o ensaio deve ser realizado com amostras de qualquer formato, sendo a variação de volume determinada pelo processo hidrostático.

8.6. Aceitação e Rejeição

- a) O critério para aceitação e rejeição da inspeção geral é o estabelecido na Tabela 16.
- b) Serão rejeitados os transformadores que não suportarem os ensaios de tensão suportável à frequência industrial, tensão induzida ou estanqueidade.
- c) Todo o lote será recusado se as médias dos valores de perdas em vazio, perdas totais e correntes de excitação forem superiores aos valores garantidos, declarados pelo fabricante na sua proposta e constantes desta NTD.
- d) Serão rejeitadas as unidades que apresentarem valores fora das tolerâncias estabelecidas no Item 8.3.1.
- e) O tratamento da chapa e o esquema de pintura serão recusados se qualquer um dos corpos-deprova não suportar os ensaios constantes do Anexo D. Caso os transformadores já estejam pintados, todo o lote será recusado.

Neste caso, novos corpos-de-prova devem ser apresentados ao inspetor da CHESP, com novo tratamento de chapa e esquema de pintura a serem utilizados nos transformadores, e submetidos aos mesmos ensaios.

Ocorrendo nova falha, novos corpos-de-prova devem ser providenciados até que se alcance o tratamento e o esquema de pintura satisfatórios.

f) A aceitação e rejeição nos ensaios de aderência e espessura da camada de tinta deve levar em consideração o estabelecido pela Tabela 16. Serão rejeitados também, transformadores que apresentarem pintura com empolamento, escorrimento e cor diferente da especificada.

Nota:

Aprovado o lote, as unidades rejeitadas devem ser pintadas e submetidas novamente aos ensaios de pintura. O fabricante deve restaurar a pintura de todas as unidades ensaiadas.

- g) O critério para aceitação e rejeição nos ensaios do revestimento de zinco é o estabelecido na Tabela 16.
- h) Para aceitação e rejeição do óleo isolante observar o estabelecido na Tabela16. Os resultados devem estar de acordo com as Tabela 17, para óleo após contato com o equipamento.
- i) Caso o transformador submetido ao ensaio de tensão suportável de impulso atmosférico apresente evidência de falha ou descarga disruptiva, duas outras unidades devem ser submetidas a novos ensaios, sem ônus para a CHESP. Ocorrendo nova falha em qualquer uma das unidades, todo o lote será rejeitado.
- j) Se os resultados do ensaio de elevação de temperatura forem superiores aos estabelecidos no Item 5.3 todo o lote deverá ser recusado.
- k) Caso o transformador não suporte as solicitações elétricas, térmicas e dinâmicas do ensaio de curto-circuito, segundo os critérios estabelecidos no Item 5.4, todo o lote será recusado.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	44 de 97	

8.7. Relatórios dos Ensaios

- 8.7.1. O relatório dos ensaios de recebimento deve ser constituído no mínimo de:
- a) número do CFM e quantidade de transformadores do lote;
- b) identificação (dados de placa) e valores garantidos pelo fabricante;
- c) resultados de todos os ensaios relacionados no item 8.3;
- d) data e assinatura do representante do fabricante e do inspetor da CHESP.
- e) ao final da inspeção o fabricante deverá encaminhar, obrigatoriamente, para a CHESP, a planilha constante do Anexo K, sob pena de não recebimento dos transformadores no almoxarifado.

Nota:

Nos relatórios dos ensaios com valores garantidos, devem ser anotados os respectivos valores máximos, médios e mínimos verificados no lote.

- 8.7.2. O relatório do ensaio de elevação de temperatura deve conter:
- a) identificação do transformador ensaiado;
- b) perdas em vazio com 100% e 105% da tensão nominal;
- c) perdas em carga em todas as derivações;
- d) perdas aplicadas ao transformador para determinação da elevação de temperatura do topo do óleo;
- e) resistência ôhmica dos enrolamentos e a respectiva temperatura, antes do ensaio;
- f) leitura de resistência ôhmica e do tempo após o desligamento além da temperatura ambiente, para cada desligamento do transformador;
- g) metodologia de cálculo adotada para determinação da resistência no instante do desligamento;
- h) outros dados que o inspetor da CHESP julgar necessário.

9. APRESENTAÇÃO DE PROPOSTA, APROVAÇÃO DE DOCUMENTOS E DE PROTÓTIPOS

9.1. Geral

- 9.1.1. A proposta só será considerada quando o fabricante atender, obrigatoriamente, aos seguintes requisitos:
- a) ter protótipo aprovado pela CHESP, conforme Item 9.3;
- b) apresentar cotação em separado para os ensaios de tipo;
- c) apresentar o Quadro de Dados Técnicos e Características Garantidas preenchido;
- d) apresentar os relatórios dos seguintes ensaios:
- elevação de temperatura, realizado pelos métodos do topo do óleo e da variação da resistência, conforme item 8.5.9;
- tensão suportável de impulso atmosférico, conforme item 8.5.10.5;
- verificação da suportabilidade a curto-circuito, com oscilogramas, conforme item 8.5.11;
- e) apresentar os desenhos constantes do item 9.2.

Todos os ensaios de 9.1.1.d devem ser realizados por um dos seguintes órgãos laboratoriais:

- a) governamentais;
- b) credenciados pelo governo do país de origem;
- c) de entidades reconhecidas internacionalmente;
- d) do fornecedor, na presença do inspetor da CHESP.

Para fabricantes que tenham os relatórios e os desenhos constantes dos Itens 9.1.1.d e 9.2, respectivamente, aprovados pela CHESP para transformadores de mesmo projeto que os ofertados, não é necessário a reapresentação dos mesmos. Nesse caso, o fabricante deve informar os números dos desenhos e dos relatórios.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	45 de 97	

Após a emissão do CFM o fabricante deve apresentar dentro de, no máximo, 20 dias, os desenhos definitivos para aprovação, que devem ser os mesmos constantes do Item 9.2 acrescidos das correções necessárias.

9.2. Desenhos que Deverão Acompanhar a Proposta

Junto com a proposta para fornecimento, o proponente deverá apresentar uma cópia dos seguintes

desenhos:

- a) vistas principais dos equipamentos, por potência, mostrando a localização das peças e acessórios, dimensões e distâncias, conforme orientação dos Desenhos 1 e 2;
- b) desenhos detalhados, em planta e cortes, do conjunto núcleo/enrolamentos indicando material usado e processos de montagem e de manutenção;
- c) placa de identificação;
- d) buchas de alta e baixa tensão, com dimensões, detalhes de montagem e características físicas e dielétricas:
- e) conectores terminais para alta e baixa tensão, com dimensões, detalhe de montagem e material utilizado:
- f) alças para fixação em poste e para suspensão do transformador, com dimensões e material utilizado;
- g) fixação e vedação da tampa, indicando: dimensões, número e tipo de parafusos para fixação e material utilizado;
- h) dispositivo de aterramento com dimensões e material utilizado, conforme Desenho 5;
- i) dispositivo para fixação e desconexão do terminal de neutro H2T, mostrando seu projeto, construção e localização interna;
- j) comutador com: dimensões, processo de fixação, proteção do acionador e indicação da marcação dos terminais:
- k) reforço do tanque para os suportes dos transformadores de 225 e 300 kVA;
- I) desenho detalhado do suporte de para-raios;
- m) desenho detalhado da embalagem, especificando os materiais empregados e indicando claramente que a madeira utilizada é certificada.

9.3. Aprovação de Protótipos

- O fabricante deve submeter previamente à aprovação da CHESP, protótipos de transformadores, monofásicos e trifásicos nos seguintes casos:
- a) fabricantes que estejam se cadastrando ou recadastrando na CHESP;
- b) fabricantes que já tenham protótipo aprovado pela CHESP e cujo projeto tenha sido alterado;
- c) quando solicitado pela CHESP.

Notas:

- 1) Para os itens a e b todos os custos decorrentes da aprovação dos protótipos correrão por conta do fabricante.
- 2) A CHESP definirá em quais potências serão feitos os ensaios.
- O prazo mínimo para apreciação dos protótipos será de 30 dias, a contar da data de recebimento pela CHESP.

Para cada protótipo a ser encaminhado à CHESP o fabricante deve apresentar:

- a) o Quadro de Dados Técnicos e Características Garantidas, clara e totalmente preenchido, acompanhado de seus documentos complementares;
- b) todos os relatórios constantes do Item 9.1.1.d e os desenhos do Item 9.2.

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	46 de 97	

Toda e qualquer divergência entre o equipamento especificado e o protótipo, bem como os motivos dessas divergências, devem ser claramente expostos no Quadro de Dados Técnicos e Características Garantidas e no Quadro de Desvios Técnicos e Exceções.

ANEXO A – TABELAS TABELA 1 TOLERÂNCIA NAS PERDAS DE TRANSFORMADORES

	Page	Perdas	
Número de unidades de cada CFM	Base de determinação	Em vazio (%)	Totais (%)
1	1 unidade	10	6
2 ou maia	cada unidade	10	6
2 ou mais	média de todas as unidades	0	0

TABELA 2 LIMITES DE ELEVAÇÃO DE TEMPERATURA (°C)

		LIMITES DE ELEVAÇÃO DE TEMPERATURA (a)				
Tipos de transformadores		Dos enrolamentos			Das partes metálicas	
		Método da variação da resistência, circulação natural do óleo, sem fluxo dirigido	Do ponto mais quent e	Do topo do óleo	Em contato com a isolação sólida ou adjacente a elas	Não em contato com a isolação sólida e não adjacente a ela
Em óleo	Sem conservador ou gás inerte acima do óleo	55 Ou 65 (c)	65 Ou 80 (c)	50 (b) Ou 60 (c)	Não devem atingir temperaturas superiores à classe térmica do material da isolação adjacente ou em contato com esta	A temperatura não deve atingir valores que venham a danificar componentes ou materiais adjacentes

Notas:

- (a) Os materiais isolantes, de acordo com a experiência prática e ensaios, devem ser adequados para o limite de elevação de temperatura em que o transformador é enquadrado.
- (b) Medida próxima à superfície do óleo.
- (c) Valores válidos para transformadores com isolação em papel termoestabilizado.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	47 de 97

(d) A temperatura limite de referência das perdas totais e impedância serão 75°C para transformadores com isolação dos enrolamentos em papel kraft e 85 °C para isolação dos enrolamentos em papel termoestabilizado.

TABELA 3
VALORES MÁXIMOS ADMISSÍVEIS PARA A TEMPERATURA MÉDIA
DE CADA ENROLAMENTO APÓS CURTO-CIRCUITO

Temperatura do sistema de isolamento (°C)	Temperatura máxima (°C)		
(0)	Cobre	Alumínio	
105 (A)	250 200		

TABELA 4
ACESSÓRIOS PARA TRANSFORMADORES

Seção de Referência	Acessórios	Potências nominais até 300 kVA
5.7.1	Indicador externo de nível do óleo	
5.7.2	Válvula de drenagem do óleo	
5.7.3	Dispositivo para retirada de amostra do óleo	
5.7.4	Meios de aterramento do tanque	0
5.7.5	Meios para suspensão da parte ativa e do transformador completamente montado	0
5.7.6	Sistema de comutação de tensões	0
5.7.7	Bujão de drenagem do óleo	
5.10	Dispositivo de alivio de pressão	0

O - obrigatório

□ - quando especificado

TABELA 5 NÍVEIS DE ISOLAMENTO

Tensão máxima	Tensão suportável de impulso atmosférico		Tensão suportável à frequência industrial durante	
do equipamento (kV)	Pleno (kV)	Cortado (kV)	1 minuto e tensão induzida (kV)	
1,2	-	-	10	
15	95	105	34	
36,2	150	165	50	

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	48 de 97

TABELA 6 ESPAÇAMENTOS EXTERNOS MÍNIMOS NO AR

Tensão máxima do	Tensão suportável de impulso	Espaça mínimo	mentos es no ar
equipamento (kV)	atmosférico (kV)	Fase-terra (mm)	Fase-fase (mm)
1,2	30	25	25
15	95	130	140
36,2	150	200	230

TABELA 7 NÍVEIS DE RUÍDO PARA TRANSFORMADORES ISOLADOS EM ÓLEO COM POTÊNCIA NOMINAL IGUAL OU INFERIOR A 300 kVA

Nível máximo de ruído (dB)	Potência nominal do transformador equivalente com dois enrolamentos (kVA)
48	1 a 50
51	51 a 100
55	101 a 300

TABELA 8 DERIVAÇÕES

Tensão			TENSÃO	(V)	
máxima do	Derivação	Primário		Secundário	
equipamento (kV)	número	Trifásico (FF)	Monofásico (FN)	Trifásico	Monofásico
	1	13.800	7.967		
	2	13.200	7.621		
15	3	12.600	7.275]	3 terminais 440/220
	4	12.000	6.929	380/220	
	5	11.400	6.583		
36,2	1	34.500	19.919		
	2	33.000	19.053		
	3	31.500	18.187]	
	4	30.000	17.321		
	5	29.500	16455		

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	49 de 97

TABELA 9 MÁXIMA TENSÃO DE RADIOINTERFERÊNCIA (TRI)

Tensão máxima do equipamento	Tensão aplicada no primário para verificação da TRI (V) Trifásico (FF) Monofásico (FN)		TRI máxima
(kV)			(□V)
15	13.800	7.967	250
36,2	34.500	19.919	650

FN - Tensão entre fase e neutro; FF - Tensão entre fases

TABELA 10

VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO

E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES

TRIFÁSICOS CLASSE 15 kV

Potência nominal	Eficiência	Perdas em vazio máximas Po	Perdas totais máximas PT	Rendimento mínimo C=0,5 e FP=0,92	Corrente de excitação máxima lo	Tensão de curto- circuito
	A	75	445	98,8		
	В	90	495	98,63		
30	C	110	560	98,41	4,2	
	D	130	630	98,19		
	E	150	695	97,97		
	A	100	610	98,91		
	В	115	670	98,79		
45	C	140	760	98,59	3,6	
	D	170	855	98,38		
	E	195	945	98,19		
	A	150	895	99,03		4.0
	В	175	990	98,91		4,0
75	C	215	1.125	98,73	3,2	
	D	255	1.260	98,55		
	E	295	1.395	98,37		
	A	195	1.210	99,14		
	В	230	1.340	99,03		
112,5	C	285	1.525	98,86	2,8	
	D	335	1.705	98,71		
	E	390	1.890	98,54		
	A	245	1.500	99,2		
	В	285	1.655	99,1		
150	C	350	1.880	98,95	2,6	
	D	420	2.110	98,79		
	E	485	2.335	98,65		
	A	330	2.100	99,26		

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	50 de 97

	В	380	2.315	99,17		
225	C	470	2.630	99,03	2,4	
	D	560	2.945	98,9		
	E	650	3.260	98,76		5,0
	A	410	2.610	99,31		
	В	475	2.885	99,23		
300	C	585	3.275	99,1	2,1	
	D	700	3.670	98,97		
	E	810	4.060	98,84		

TABELA 11

VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO

E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES

TRIFÁSICOS CLASSE 36,2 kV

Potência nominal	Eficiência	Perdas em vazio máximas Po	Perdas totais máximas PT	Rendimento mínimo C=0,5 e FP=0,92	Corrente de excitação máxima lo	Tensão de curto- circuito
	A	90	500	98,62		
	В	105	555	98,45		
30	C	125	630	98,21	4,2	
	D	145	700	97,99		
	E	165	775	97,75		
	A	125	695	98,72		
	В	145	770	98,57		
45	C	175	875	98,34	3,6	
	D	200	970	98,14		
	E	230	1.075	97,91		
	A	175	1.025	98,89		4.0
	В	200	1.135	98,76		4,0
75	C	240	1.285	98,57	3,2	
	D	280	1.430	98,38		
	E	320	1.580	98,19		
	A	240	1.335	99,02		
	В	275	1.470	98,9		
112,5	C	330	1.665	98,73	2,8	
	D	385	1.860	98,56		
	E	440	2.055	98,4		
	A	295	1.720	99,06		
	В	340	1.895	98,95		
150	C	405	2.145	98,8	2,6	
	D	475	2.395	98,63		
	E	540	2.640	98,48		
	A	410	2.340	99,15		
	В	470	2.585	99,04		
225	C	565	2.925	98,9	2,4	

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	51 de 97

	D	655	3.260	98,75		
	E	750	3.600	98,61		5,0
	A	495	2.900	99,21		
	В	565	3.195	99,12		
300	C	675	3.615	98,99	2,1	
	D	790	4.035	98,85		
	E	900	4.450	98,72		

TABELA 12

VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO

E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES

MONOFÁSICOS CLASSE 15 kV

Potência nominal	Eficiência	Perdas em vazio	Perdas totais	Rendimento mínimo	Corrente de excitação	Tensão de curto-
		máximas Po	máximas PT	C=0,5 e FP=0,92	máxima lo	circuito
	A	30	160	98,66		
	В	35	180	98,47		
10	C	40	200	98,29	2,7	
	D	45	225	98,08		
	E	50	245	97,90		
	A	40	215	98,80		
	В	45	240	98,66	2,4	
15	C	50	270	98,50		
	D	60	300	98,29		
	E	65	330	98,13		2,5
	A	55	310	98,98		
	В	65	355	98,82		
25	C	70	395	98,70	2,2	
D	D	80	435	98,55		
	E	90	480	98,40		
	A	80	425	99,05		
	В	95	490	98,89		
37,5	C	110	550	98,74	2,1	
	D	120	605	98,62		
	E	135	665	98,47		

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	52 de 97

TABELA 13 VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES MONOFÁSICOS CLASSE 36,2 kV

Potência		Perdas em	Perdas	Rendimento	Corrente de	Tensão de
nominal	Eficiência	vazio	totais	mínimo	excitação	curto-
		máximas	máximas PT	C=0,5	máxima lo	circuito
		Po		e FP=0,92		
	A	40	185	98,37		
	В	45	205	98,19		
10	C	50	225	98,00	3,5	
	D	55	250	97,79		
	E	60	270	97,61		
	A	50	255	98,55		
	В	60	290	98,33		
15	C	65	320	98,17	3,2	3,0
	D	75	350	97,96		
	E	80	380	97,80		
	A	65	370	98,79		
	В	75	415	98,63		
25	C	85	455	98,48	3,0	
	D	95	500	98,32	·	
	E	105	545	98,16		
	A	95	500	98,88		
	В	110	565	98,72		
37,5	C	120	620	98,60	2,8	
	D	135	680	98,45		
	E	150	740	98,30]	

TABELA 14 ESPESSURA DA CHAPA DE AÇO

Potência do transformador (kVA)		Espessura mínima (mr	m)
(1174)	Tampa	Corpo	Fundo
P ≤ 10	1,90	1,90	1,90
$10 < P \le 150$	2,65	2,65	3,00
$150 < P \le 300$	3,00	3,00	4,75

Nota:

As espessuras estão sujeitas às tolerâncias da ABNT NBR 6650.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	53 de 97

TABELA 15
BUCHAS DE BAIXA TENSÃO PARA TRANSFORMADORES

Potência do transformador	Maior tensão s	Maior tensão secundária (V)		
trifásico	220	380	Terminal	
(kVA)	Bucha	Bucha]	
30	1 2/160	1 2/160	T1	
45	1,3/160	1,3/160	11	
75	1,3/400	1,3/160	T1	
112,5	1,3/400	1,3/400	T1	
150	1,3/800	1,3/400	T2	
225	1.2/900	1.2/900	т2	
300	1,3/800	1,3/800	Т3	

Nota:

As buchas para transformadores monofásicos potências 10 a 37,5 kVA deverão ser do tipo T1 1,3/160 A.

TABELA 16
PLANO DE AMOSTRAGEM PARA INSPEÇÃO GERAL, ÓLEO,
ESTANQUEIDADE, PINTURA, GALVANIZAÇÃO,
JUNTAS DE VEDAÇÃO E EMBALAGEM

Número de	Amo	ostra	A. D.	D.
unidades	Sequência	Tamanho	Ac	Re
2 a 50	-	2	0	1
51 - 500	1ª	5	0	2
51 a 500	2ª	5	1	2
501 a 2 200	1ª	8	0	3
501 a 3.200	2ª	8	3	4

Obs:

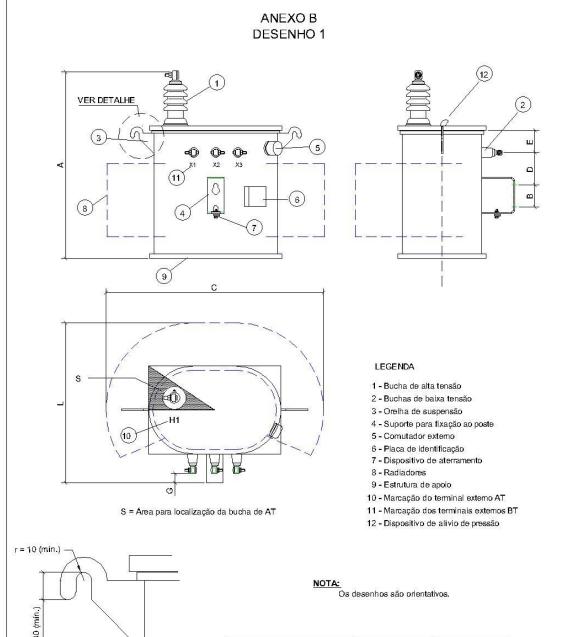
- Regime de inspeção normal
- Amostragem dupla
- NQA: 6,5%
- Nível de inspeção: S3

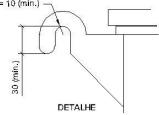
NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	54 de 97

TABELA 17 ESPECIFICAÇÃO DO ÓLEO MINERAL APÓS CONTATO COM EQUIPAMENTO

CARACTERÍSTICAS		UNIDADE	Valores garantidos		MÉTODO	
			Mínimo	Máximo		
Aparência		-	O óleo deve ser claro, límpido, isento de matérias em suspensão ou sedimentadas.		Visual	
Densidade a 20/4°C		-	0,861 (N)	0,900 (N) 0,860 (P)	NBR 7148	
Viscosidade cinemática a: (2)	20°C 40°C 100°C	mm²/s	- - -	25,0 11,0(N) 12(P) 3,0	NBR 10441	
Ponto de fulgor		°C	140,0	-	NBR 11341	
Ponto de fluidez		°C	-	-39,0	NBR 11349	
Índice de neutralização		mg KOH/g	-	0,03	NRB 14248	
Tensão interfacial a 25°C		mN/m	40,0	-	NBR 6234	
Cor ASTM		-	-	1,0	ASTM D1500	
Teor de água		mg/kg	-	≤25	NBR 10710	
Cloretos		-	Ausentes		NBR 5779	
Sulfatos		-	Ausentes		NBR 5779	
Enxofre corrosivo		=	Ausente		NBR 10505	
Rigidez dielétrica (eletrodo de disco)		kV	≥30	-	NBR 6869	
Rigidez dieletrica (eletrodo de calota)		kV	≥45		IEC 60156	
Fator de perdas dielétricas ou fator de dissipação a 100°		%	-	0,90	ASTM D924 ou NBR 12133	
Fator de perdas dielétricas ou fator e dissipação a 25° C		%	<0,05		NBR ABNT 15133	
Estabilidade à oxidação: -Índice de neutralização		mg KOH/g	-	<0,03	ABNT NBR 14248	
Teor de bifenilas policloradas (PCB)		mg/kg	Não d	etectável	NBR 13882	

(N) – Naftênico e (P) – Parafínico

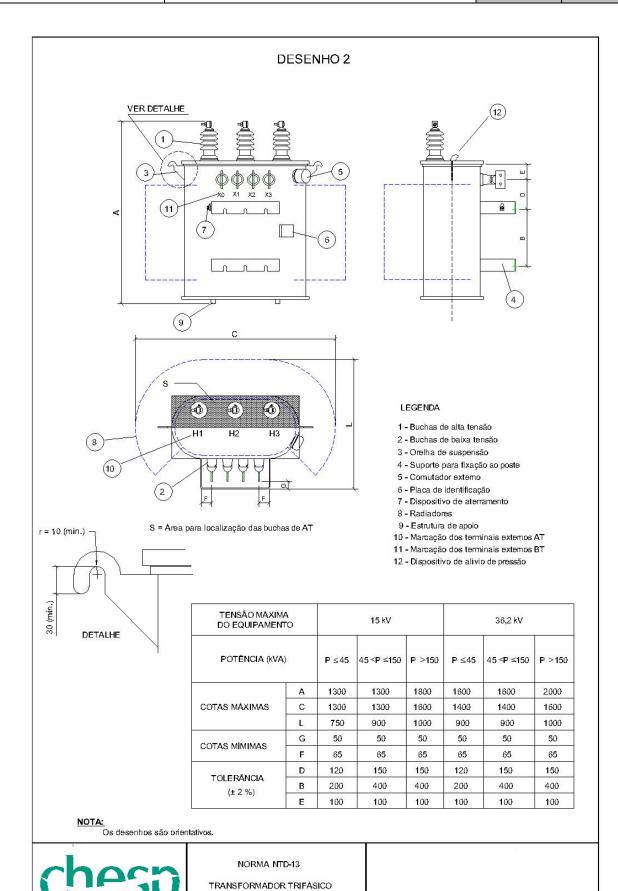

Notas:


- 1) Antes de iniciar a inspeção, o fornecedor deve apresentar ao inspetor, certificado comprovando todas as características do óleo, contidas nesta tabela.
- 2) O ensaio de viscosidade será realizado em duas temperaturas dentre as três citadas.
- 3) Esta norma requer que o óleo isolante atenda ao limite de fator de perdas dielétricas a 100°C ou ao fator de dissipação a 90°. Esta especificação não exige que o óleo isolante atenda aos limites medidos por ambos os métodos.
- 4) Os recipientes destinados ao fornecimento do óleo mineral isolante devem ser limpos e isentos de matérias estranhas.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	55 de 97

ANEXO B DESENHOS

TENSÃO MÁXIM DO EQUIPAMEN	3860	15 kV	36,2 kV
POTÊNCIA (kVA	.)	P ≤:	37,5
COTAS MÁXIMAS	А	1200	1300
	С	800	800
	L	900	900
COTAS MÍNIMAS	G	50	50
	E	100	100
TOLERÂNCIAS (± 2 %)	D	100	100
	В	100	100

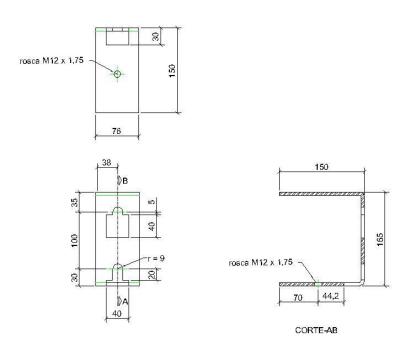


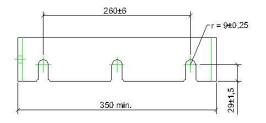
NORMA NTD-13

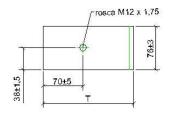
TRANSFORMADOR MONOFÁSICO DIMENSÕES GERAIS

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	56 de 97

DIMENSÕES GERAIS


Companhia Hidroelétrica São Patricio

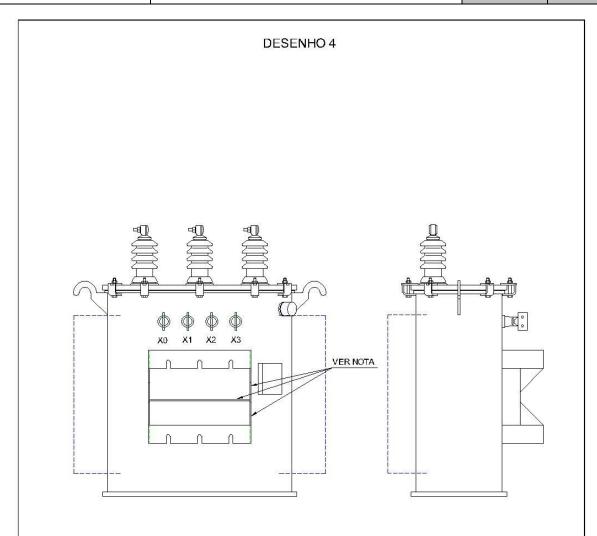

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	57 de 97


DESENHO 3

TIPO 1 - Transformador Monofásico P ≤ 37,5 kVA

TIPO 2 - Transformador Trifásico P ≤ 300 kVA

T = função da cota "G" do Desenho 2



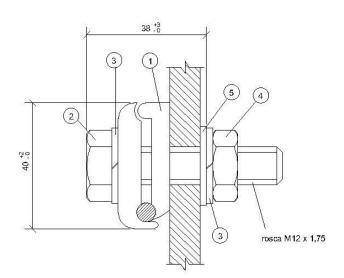
NORMA NTD-13

SUPORTE PARA FIXAÇÃO DO TRANSFORMADOR AO POSTE

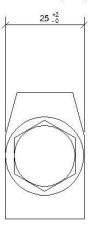
NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	58 de 97

NOTA:

- Estrutura mínima requerida para reforço dos suportes de fixação ao poste.


NORMA NTD-13

ESTRUTURA DE REFORÇO PARA TRANSFORMADORES DE 225 E 300 kVA



NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	59 de 97

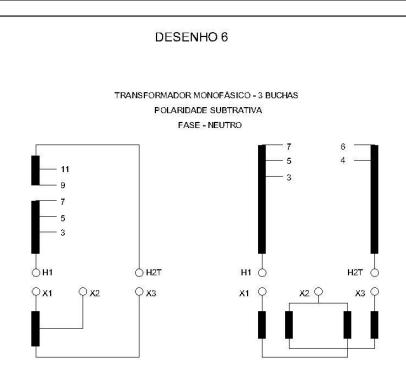
DESENHO 5

Para condutores de alumínio e cobre com diâmetro 3,2 e 10,5 mm

NOTAS:

- Conector: corpo em liga de cobre, com teor de cobre superior a 85%, teor de zinco inferior a 6%, condutividade elétrica mínima 25% IACS a 20°C, estanhado com espessura mínima da camada 8,0 m.

 2) Parafuso de cabeça sextavada: aço carbono galvanizado a fogo ou liga de cobre.
- 3) Arruela de pressão: aço carbono galvanizado a fogo ou bronze fosforoso.
- 4) Porca sextavada: aço carbono galvanizado a fogo ou liga de cobre.
- 5) Arruela lisa: aço carbono galvanizado a fogo ou liga de cobre.
- 6) O conector deve permitir a colocação ou retirada do condutor de maior seção sem necessidade de desmonte.
- 7) As características mecânicas devem estar em conformidade com a NBR 5370.
- 8) Alternativamente, o conector, parafuso, porca e arruelas podem ser confeccionados em aço inoxidável.



NORMA NTD-13

DISPOSITIVO DE ATERRAMENTO

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	60 de 97

Diagramas de Ligações - Numeração dos Terminais e Derivações - Polaridade Subtrativa -

NORMA NTD-13

DIAGRAMAS DE LIGAÇÕES -TRANSFORMADOR MONOFÁSICO

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	61 de 97

DESENHO 7

TRANSFORMADOR TRIFÁSICO

Diagrama Fasorial Dyn1

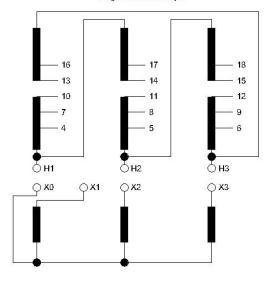
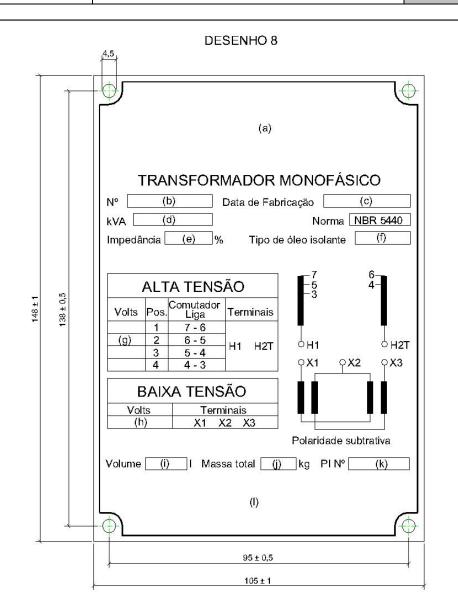


Diagrama de Ligação - Numeração dos Terminais e Derivações



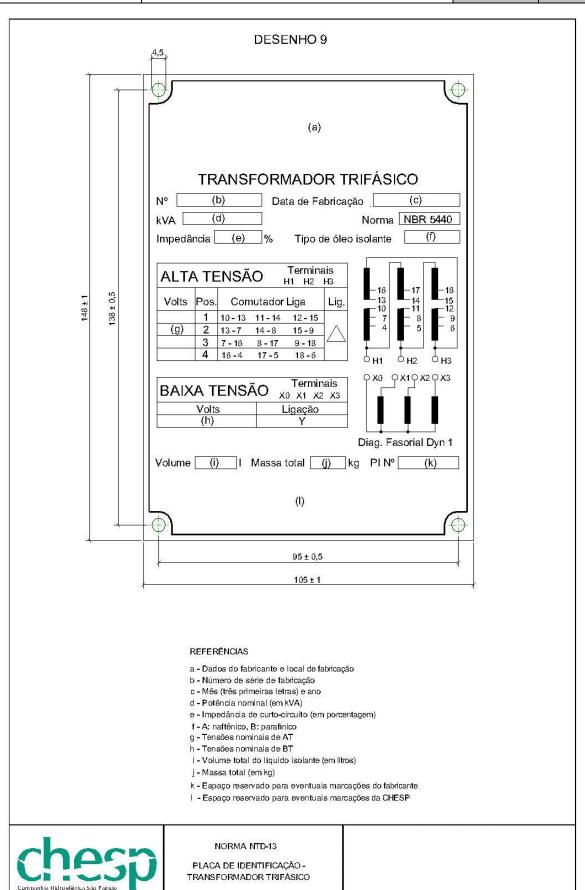
NORMA NTD-13

DIAGRAMA DE LIGAÇÃO -TRANSFORMADOR TRIFÁSICO

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	62 de 97

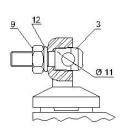
REFERÊNCIAS

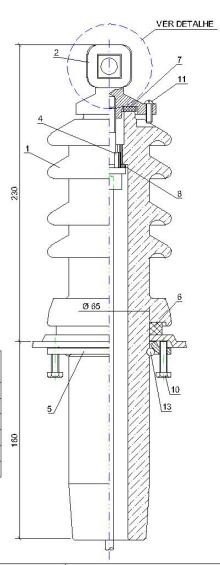
- a Dados do fabricante e local de fabricação
- b Número de série de fabricação
- c Mês (três primeiras letras) e ano
- d Potência nominal (em kVA)
- e Impedância de curto-circuito (em porcentagem)
- f A: naftênico, B: parafínico
- g Tensões nominais de AT
- h Tensões nominais de BT
- i Volume total do líquido isolante (em litros)
- j Massa total (em kg)
- k Espaço reservado para eventuais marcações do fabricante
- I Espaço reservado para eventuais marcações da CHESP



NORMA NTD-13

PLACA DE IDENTIFICAÇÃO -TRANSFORMADOR MONOFÁSICO


NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	63 de 97



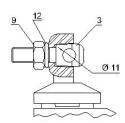
NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	64 de 97

DESENHO 10

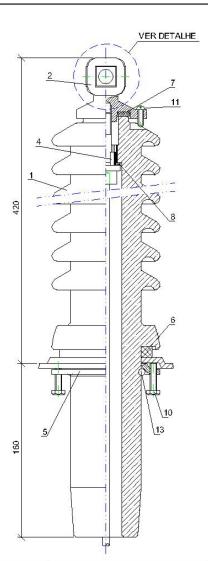
DETALHE

CARACTERÍSTICAS ELÉTRICAS	
TENSÃO NOMINAL (kV)	15
CORRENTE NOMINAL (A)	160
TENSÃO APLICADA 60 Hz, 1 MIN. A SECO E SOB CHUVA (kVef)	34
TENSÃO SUPORTÁVEL DE IMPULSO ATMOSFÉRICO (kVar)	110
DISTÂNCIA DE ARCO EXTERNO (mm)	155
DISTÂNCIA DE ESCOAMENTO (mm)	280

POS.	QUANT.	DENOMINAÇÃO	MATERIAL
1	1	CORPO ISOLANTE	CERÂMICA
2	1	TERMINAL	LATÃO ESTANHADO
3	1	PARAFUSO DE APERTO	LATÃO ESTANHADO
4	1	CONDUTOR PASSANTE	LATÃO ESTANHADO
5	1	FLANGE DE FIXAÇÃO	AÇO OXIDADO
6	1	JUNTA INFERIOR	BORRACHA SINTÉTICA
7	1	JUNTA SUPERIOR	BORRACHA SINTÉTICA
8	1	ARRUELA	PAPELÃO HIDRÁULICO
9	1	PORCA SEXTAVADA M12	LATÃO ESTANHADO
10	3	PARAFUSO CABEÇA SEXTAVADA M6 x 25 - 8,8	AÇO OXIDADO
11	1	PARAFUSO CABEÇA REDONDA C/ FENDA M5 X 15	LATÃO ESTANHADO
12	1	ARRUELA DE PRESSÃO B12 (NBR 5854)	AÇO ZINCADO
13	1	MOLA	AÇO OXIDADO


NORMA NTD-13

BUCHA 15 kV/160 A

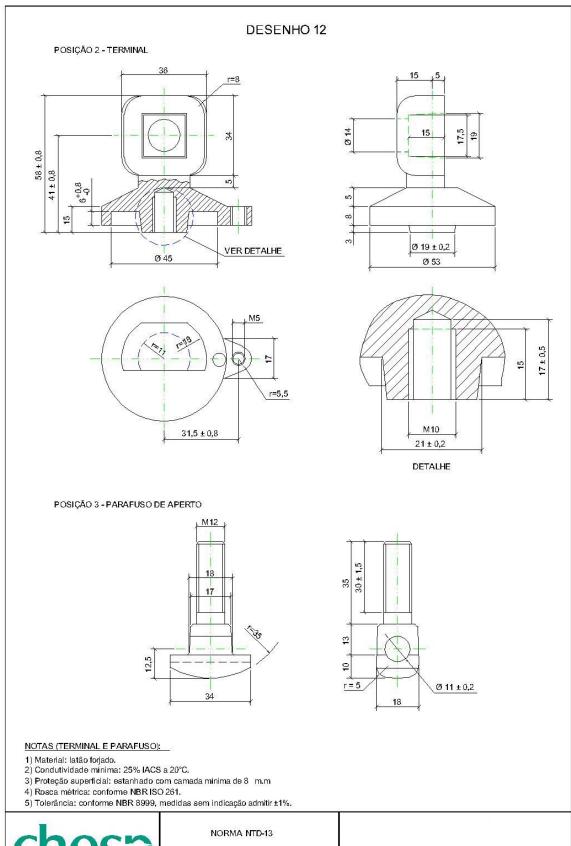

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	65 de 97	

DESENHO 11

DETALHE

TENSÃO NOMINAL (kV)	36,2
CORRENTE NOMINAL (A)	160
TENSÃO APLICADA 60 Hz, 1 MIN. A SECO E SOB CHUVA (kVef)	70
TENSÃO SUPORTÁVEL DE IMPULSO ATMOSFÉRICO (kVcr)	150
DISTÂNCIA DE ARCO EXTERNO (mm)	346
DISTÂNCIA DE ESCOAMENTO (mm)	680

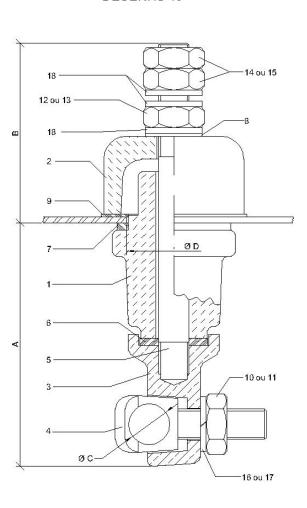
POS.	QUANT.	DENOMINAÇÃO	MATERIAL
1	1	CORPO ISOLANTE	CERÂMICA
2	1	TERMINAL	LATÃO ESTANHADO
3	1	PARAFUSO DE APERTO	LATÃO ESTANHADO
4	1	CONDUTOR PASSANTE	LATÃO ESTANHADO
5	1	FLANGE DE FIXAÇÃO	AÇO OXIDADO
6	1	JUNTA INFERIOR	BORRACHA SINTÉTICA
7	1	JUNTA SUPERIOR	BORRACHA SINTÉTICA
8	1	ARRUELA	PAPELÃO HIDRÁULICO
9	1	PORCA SEXTAVADA M12	LATÃO ESTANHADO
10	3	PARAFUSO CABEÇA SEXTAVADA M6 x 25 - 8,8	AÇO OXIDADO
11	1	PARAFUSO CABEÇA REDONDA C/ FENDA M5 X 15	LATÃO ESTANHADO
12	1	ARRUELA DE PRESSÃO B12 (NBR 5854)	AÇO ZINCADO
13	1	MOLA	AÇO OXIDADO



NORMA NTD-13

BUCHA 36,2 kV/160 A

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	66 de 97



BUCHA 15/36,2 kV/160 A (TERMINAL)

NTD	013	
VERSÃO	2	
VIGÊNCIA	01/10/22	
PÁGINAS	67 de 97	

DENOMINAÇÃO		DIMEN	ISÕES	S		
DENOMINAÇÃO	А	В	ØC	ØD		
1,3/160 - T1	100	79	15	34		
1,3/400 - T1	130	95	22	49		

NOTAS:

- 1) Posições 3 e 5: peças soldadas.
- 2) Tolerâncias: conforme tolerâncias específicadas para cada componente, indicadas nos respectivos desenhos.

NORMA NTD-13

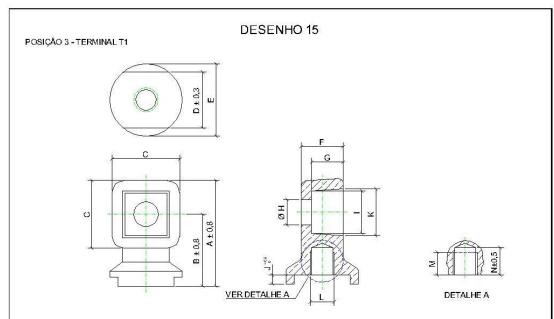
BUCHA 1,3 kV - 160/400 A

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	68 de 97

DESENHO 14

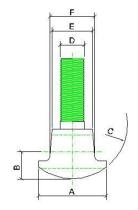
POS.	DENOMINAÇÃO	MATERIAL
1	CORPO ISOLANTE EXTERNO	OFDÉMICA
2	CORPO ISOLANTE INTERNO	CERÁMICA
3	TERMINAL DE LIGAÇÃO T1	LATÃO ESTANHADO
4	PARAFUSO DE LIGAÇÃO	LATAGESTANHADO
5	CONDUTOR PASSANTE	COBRE ELETROLÍTICO
6	JUNTA SUPERIOR	BORRACHA SINTÉTICA
7	JUNTA INFERIOR	BORINGHA SINTETICA
8	ARRUELA	PAPELÃO HIDRÁULICO
9	ARRUELA	TAI ELAO TIIDIMOLIOO
10	PORCA SEXTAVADA M12	
11	PORCA SEXTAVADA M16	
12	PORCA SEXTAVADA M10	LATÃO ESTANHADO
13	PORCA SEXTAVADA M16	LATAGESTANIPADO
1 4	PORCA SEXTAVADA CHATA M10	
15	PORCA SEXTAVADA CHATA M16	
16	ARRUELA DE PRESSÃO B12 (NBR 5854)	AÇO ZINCADO
17	ARRUELA DE PRESSÃO B16 (NBR 5854)	AÇO ZINCADO
18	ARRUELA LISA	LATÃO ESTANHADO

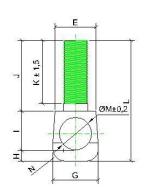
CARACTERÍSTICAS ELÉTRICAS		Т1	
TENSÃO NOMINAL (kV)	1,3	1,3	
CORRENTE NOMINAL (A)	160	400	
TENSÃO APLICADA 60 Hz, 1 MIN. A SECO E SOB CHUVA (kVef)	10	10	
TENSÃO SUPORTÁVEL DE IMPULSO ATMOSFÉRICO (kVor)	30	30	
DISTÂNCIA DE ARCO EXTERNO (mm)	47	60	
DISTÂNCIA DE ESCOAMENTO (mm)	50	65	



NORMA NTD-13

BUCHA 1,3 kV - 160/400 A CARACTERÍSTICAS ELÉTRICAS




NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	69 de 97

DENOMINAÇÃO		DIMENSÕES												
	Α	В	С	D	ØE	Ē	G	ØН	1	J	К	L	М	N
1,3/160	54	37	34	25	35	20	16,5	14	21,5	5	23	M10	10	12
1,3/400	70	47,5	45	37	48	28	21	17	28	6	31	M16	15	18

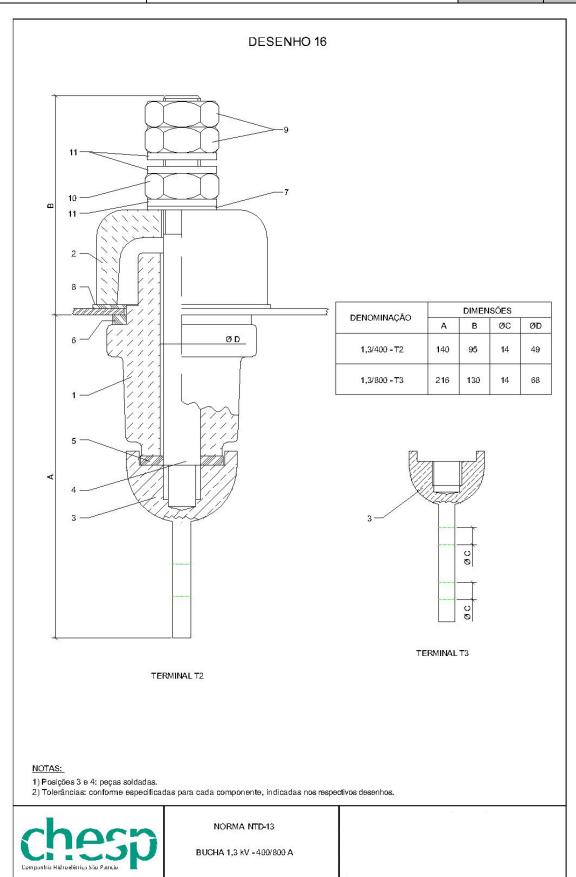
POSIÇÃO 4 - PARAFUSO DE APERTO

DENOMINAÇÃO		DIMENSÕES												
	Α	В	С	D	Е	F	G	Н	G	J	К	L	ØM	N
1,3/160	34	14	35	M12	20,5	22	22	8,5	16,5	33	26	58	15	7
1,3/400	45	18	73	M16	27	30	30	12	21	47	42	80	22	7

NOTAS (TERMINAL T1 E PARAFUSO)

- 1) Material: latão forjado.
- 2) Condutividade mínima: 25% IACS a 20°C.

- 3) Proteção superficial: estanhado com camada mínima 8 mm
 4) Rosca métrica, conforme NBR ISO 261.
 5) Tolerâncias: conforme NBR 8999 (medidas sem indicação admitir ± 1%).



NORMA NTD-13

BUCHA 1,3 kV - 160/400 A (TERMINAL T1)

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	70 de 97

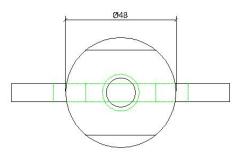
NTD	013		
VERSÃO	2		
VIGÊNCIA	01/10/22		
PÁGINAS	71 de 97		

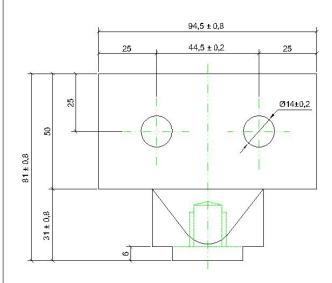
DESENHO 17

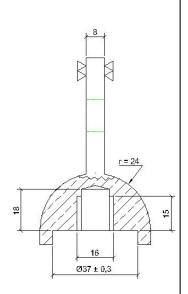
POS.	DENOMINAÇÃO	MATERIAL		
1	CORPO ISOLANTE EXTERNO	- CERĂMICA		
2	CORPO ISOLANTE INTERNO	CERAINICA		
3	TERMINAL - T2 / T3	LATÃO ESTANHADO		
4	CONDUTOR PASSANTE	COBRE ELETROLÍTICO		
5	JUNTA SUPERIOR	BODDACHA SIATÉTICA		
6	JUNTA INFERIOR	BORRACHA SINTÉTICA		
7	ARRUELA	– PAPELÃO HIDRÁULICO		
8	ARRUELA	PAPELAO HIDIAULICO		
9	PORCA SEXTAVADA: T2-M16 / T3-M24			
10	PORCA SEXTAVADA CHATA: T2-M16 / T3-M24	LATÃO ESTANHADO		
11	ARRUELA LISA	1		

CARACTERÍSTICAS ELÉTRICAS	T2	ТЗ
TENSÃO NOMINAL (kV)	1,3	1,3
CORRENTE NOMINAL (A)	400	800
TENSÃO APLICADA 60 Hz, 1 MIN. A SECO E SOB CHUVA (kVef)	10	10
TENSÃO SUPORTÁVEL DE IMPULSO ATMOSFÉRICO (kVcr)	30	30
DISTÂNCIA DE ARCO EXTERNO (mm)	60	81
DISTÂNCIA DE ESCOAMENTO (mm)	65	87

NORMA NTD-13


BUCHA 1,3 kV -400/800 A CARACTERÍSTICAS ELÉTRICAS



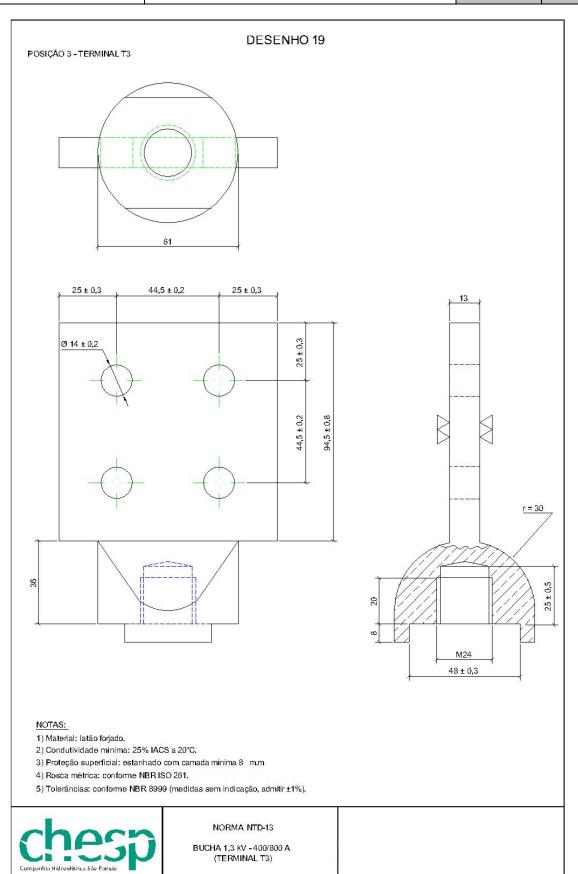

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	72 de 97

DESENHO 18

POSIÇÃO 3 - TERMINAL T2

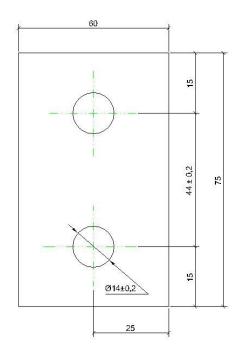
NOTAS:

- 1) Material: latão forjado.
- 2) Condutividade mínima: 25% IACS a 20°C.
- 3) Proteção superficial: estanhado com camada mínima 8 m.m
- 4) Rosca métrica: conforme NBR ISO 261.
- 5) Tolerâncias: conforme NBR 8999 (medidas sem indicação, admitir ±1%).



NORMA NTD-13

BUCHA 1,3 kV -400/800 A (TERMINAL T2)

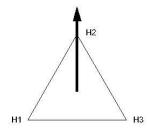

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	73 de 97

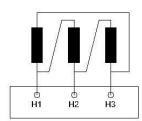
NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	74 de 97

DESENHO 20

- 1) Material: chapa de aço inoxidável;
 2) Espessura mínima: 4,75 mm ± 0,36 mm;
 3) Tolerância: ± 1 %.

NORMA NTD-13

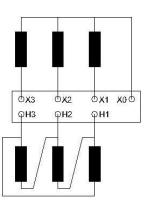

TERMINAL X2 PARA TRANSFORMADORES MONOFÁSICOS

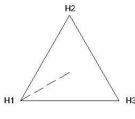


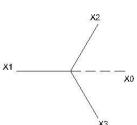
NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	75 de 97

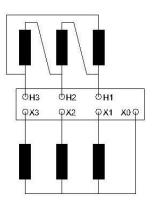
DESENHO 21

TRIÂNGULO (D)

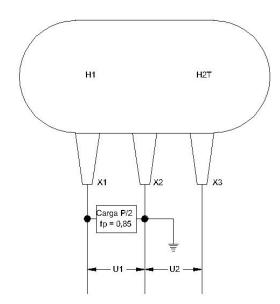



SÍMBOLO DE LIGAÇÃO (Dyn1)


Sentido de Rotação dos Fasores



LIGAÇÃO TRIÂNGULO-ESTRELA



NORMA NTD-13 SÍMBOLOS DE LIGAÇÃO, MARCAÇÃO DE TERMINAIS E DIAGRAMAS FASORIAIS

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	76 de 97

P = Potência nominal do transformador (kVA) $\label{eq:U2-U1} U2 - U1 \le 3 \ volts$

FIGURA 1 - TRANSFORMADOR MONOFÁSICO COM 3 BUCHAS SECUNDÁRIAS

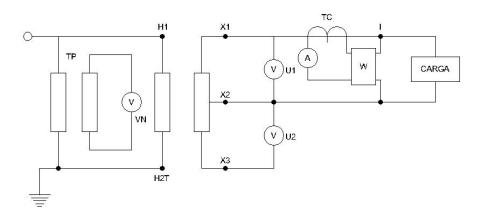
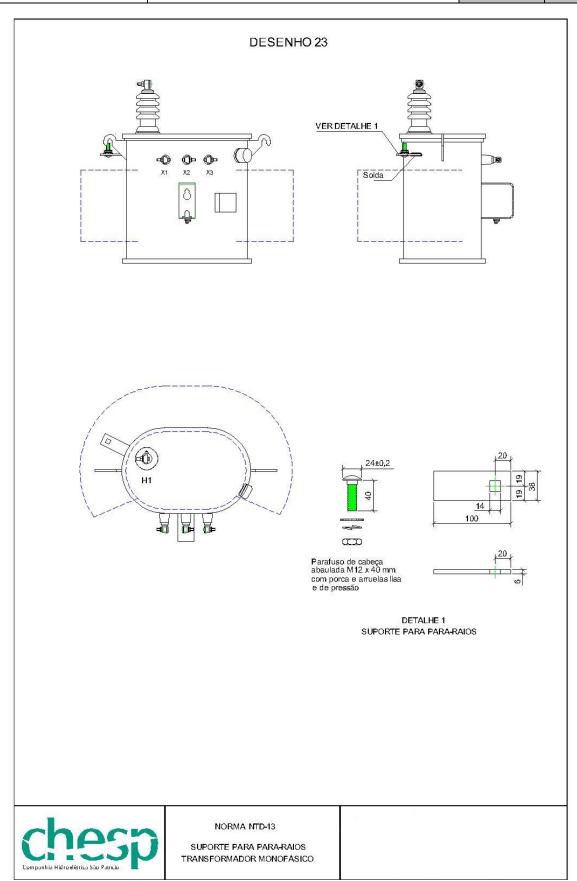
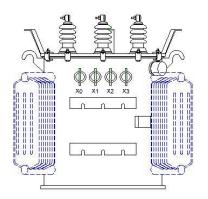


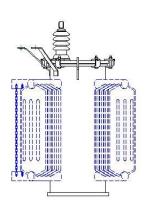
FIGURA 2 - ESQUEMA DE LIGAÇÃO PARA O ENSAIO

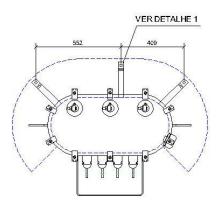


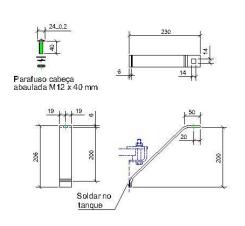
NORMA NTD-13

ENSAIO DE VERIFICAÇÃO DO DESEQUILÍBRIO DE TENSÃO

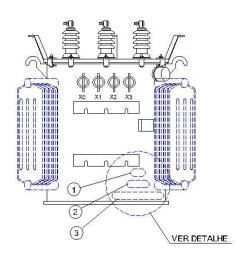

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	77 de 97



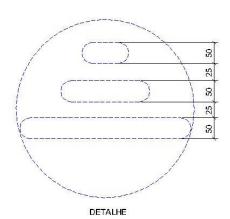



NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	78 de 97

DETALHE 1 SUPORTE PARA PARA-RAIOS


NORMA NTD-13


SUPORTE PARA PARA-RAIOS -TRANSFORMADOR TRIFÁSICO

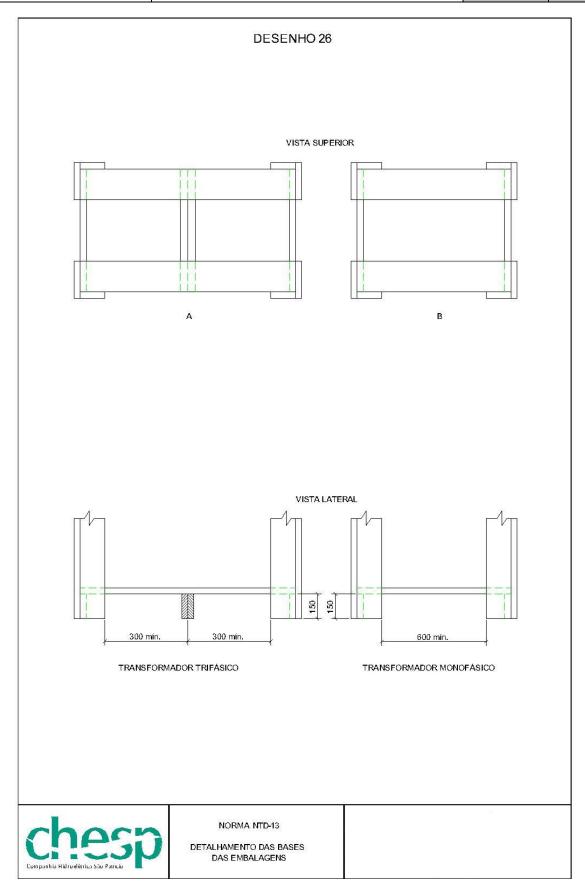


NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	79 de 97

DESENHO 25

NOTA:

- a) As características referentes ao transformador deverão ser indelevelmente pintadas na carcaça, conforme indicado abaixo:
 - 1 a letra "C";
 - 2 potência nominal (sem a unidade kVA);
 - numeração patrimonial fornecida pela CHESP.



NORMA NTD-13

NUMERAÇÃO PATRIMONIAL

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	80 de 97

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	81 de 97

ANEXO C INSPEÇÃO GERAL DOS TRANSFORMADORES

Na inspeção geral dos transformadores deve ser observado, no mínimo, o seguinte:

C.1 TANQUE

C.1.1 Parte Interna

- Inspeção visual da pintura (inclusive radiadores ou tubos).
- Marcação do nível do óleo isolante.
- Ausência de:
 - Escorrimento, empolamento e enrugamento da pintura.
 - Sujeira no fundo do tanque, tais como borra, celulose, limalha, areia, etc.
 - Ferrugem no tanque e nos radiadores.
 - Respingos na pintura externa.

C.1.2 Parte Externa

- Ausência de escorrimento, empolamento e enrugamento da pintura.
- Marcação dos terminais de alta e baixa tensão, conforme 5.5 e Desenhos 1 e 2 para transformadores monofásicos e trifásicos, respectivamente.
- Marcação do número de série na orelha de suspensão e na tampa.
- Numeração patrimonial, conforme item 6.17 e Desenho 25.

Nota:

Antes de serem apresentados para inspeção os transformadores devem ser limpos e estar com os adesivos relativos à execução dos ensaios de rotina e estanqueidade colados no tanque

C.2 PARTE ATIVA

C.2.1 Núcleo

- Ausência de oxidação e borra.
- Aterramento.
- "Gaps" e empacotamento.
- Apoio das chapas na parte inferior.

C.2.2 Comutador

- Mudança simultânea nas fases.
- Marcação das posições.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	82 de 97

C.2.3 Bobinas

- Ausência de deformação por aperto excessivo dos tirantes, calços, etc.
- Rigidez mecânica das bobinas e dos calços.
- Canais para circulação de óleo desobstruídos.
- Flexibilidade dos cabos de interligação ao comutador e buchas de AT.
- Qualidade do enrolamento: uniformidade, ausência de remonte de espiras, impregnação.
- Orientação e fixação dos cabos de subida ao comutador.

C.2.4 Tirantes, Barras de Aperto e Olhais para Suspensão

- Inspeção visual da pintura.
- Ausência de oxidação nas partes não pintadas.
- Rigidez mecânica dos tirantes e barras de aperto.
- Qualidade e localização dos olhais para suspensão da parte ativa.
- Ausência de isolamento nas áreas de contato de fixação da parte ativa ao tanque.
- Marcação do número de série.

ANEXO D VERIFICAÇÃO DO ESQUEMA DE PINTURA DO TRANSFORMADOR

D.1 Névoa Salina

Com uma lâmina cortante, romper o filme até à base, conforme ABNT NBR 8094 de tal forma que fique traçado um "X" sobre o painel.

Deve resistir a 500 h de exposição contínua ao teste de névoa salina (solução a 5% de NaC1 em água). Não deve haver empolamento e a penetração máxima sob os cortes traçados deve ser de 4 mm, os painéis devem ser mantidos em ângulo de 15° a 30° com a face rompida voltada para o atomizador, conforme ABNT NBR 8094

D.2 Umidade (Ensaio Clássico, Variação da ASTM D1735)

Os painéis são colocados em ângulo de 15° a 30° numa câmara com umidade relativa a 100% e temperatura ambiente de 40 \square 1°C. Após 250 h de exposição contínua não podem ocorrer empolamentos ou defeitos similares.

D.3 Impermeabilidade (ASTM D870)

Imergir 1/3 do painel em água destilada mantida a 37,8 □ 1°C. Após 480 h não deve haver empolamentos ou defeitos similares.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	83 de 97

D.4 Aderência (ABNT NBR 11003 - Método B)

Selecionar uma área plana, livre de imperfeições, limpa e seca. Executar o ensaio conforme prescrito na ABNT NBR 11003, o grau de aderência deve ser Gr0 ou Gr1.

D.5 Brilho (ASTM D523)

O acabamento deve ter um brilho de 55 a 65 medido no Gardner Glossmeter a 60° de ângulo.

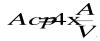
D.6 Resistência da Pintura Interna ao Óleo Isolante (ABNT NBR 6529)'

D.7 Resistência à atmosfera úmida saturada na presença de SO₂

Com uma lâmina cortante, deve-se romper o filme até à base, de tal forma que fique traçado um "X" sobre o painel.

Deve resistir a uma ronda de ensaio sem apresentar bolhas, enchimentos, absorção de água, não deve apresentar manchas, e corrosão de no máximo 3 mm a partir do corte em "X" e nas extremidades.

Nota:


Uma ronda consiste em um período igual a 8 h a 40 \square 2°C na presença de SO₂, após o qual desliga-se o aquecimento e abre-se a tampa do aparelho, deixando-se as peças expostas ao ar, dentro do mesmo durante 16 h à temperatura ambiente.

D.8 Espessura da Película

Deve ser ensaiada de acordo com a ABNT NBR 10443.

D.9 Resistência da Pintura Interna ao Óleo Isolante

Deve ser realizado conforme ASTM D3455. A área pintada do corpo-de-prova a ser colocado em um litro de óleo é dada por:

Onde:

Acp =área do corpo-de-prova a ser colocado em um litro de óleo, em m^2 ;

 $At = \text{superficie interna do transformador em contato com o óleo isolante, em } m^2;$

Vt = volume de óleo do transformador em litros.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	84 de 97

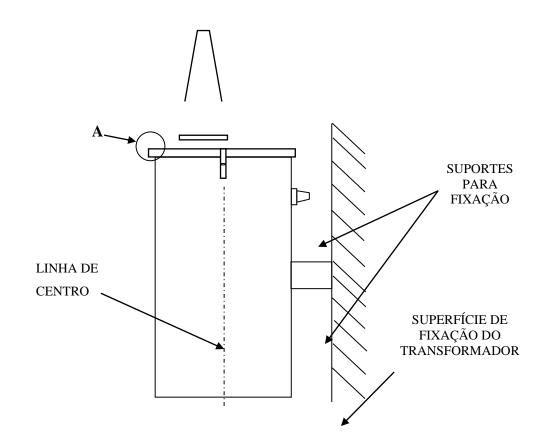
Após o ensaio, as propriedades do óleo no qual foram colocados os corpos-de-prova devem ser as seguintes:

- a) tensão interfacial a 25°C (mínimo): 0,034 N/m;
- b) índice de neutralização (máxima variação): 0,03 mg KOH/g;
- c) rigidez dielétrica (mínimo): 25,8 kV/2,54 mm;
- d) fator de potência a 100°C (máximo): 1,6%
- e) cor (máxima variação): 0,5.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	85 de 97

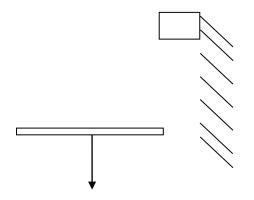
ANEXO E ENSAIO PARA VERIFICAÇÃO DA RESISTÊNCIA MECÂNICA DOS SUPORTES DE FIXAÇÃO DOS TRANSFORMADORES

Deve ser realizado em uma unidade de cada potência.


O tanque do transformador, vazio, sem parte ativa e óleo isolante, porém com tampa e buchas de alta e baixa tensão, deve ser fixado em uma estrutura rígida que simule a instalação em um poste.

Para fixação dos transformadores trifásicos à estrutura de teste devem ser utilizados somente os furos laterais de cada suporte de fixação.

Após a montagem, o tanque deve ser submetido a uma carga igual ao peso do transformador completo, incluindo a parte ativa e o óleo isolante, para acomodação do conjunto. Após a retirada dessa carga, deve ser marcado o ponto A na tampa do tanque, conforme figura abaixo. Em seguida deve ser aplicada uma carga F de, pelo menos, 1,5 vezes o peso do transformador completo. Essa carga não deve ser inferior ao peso do transformador mais 80 kg, aplicada durante cinco minutos.


Após a retirada da carga, o ponto A não deve ter deslocamento residual maior que 2 mm no sentido de aplicação da carga F e não devem ocorrer trincas ou ruptura nos suportes de fixação.

Para o primeiro fornecimento ou em casos de alteração de projeto, deve ser verificada a carga de ruptura do suporte. Essa carga não deve ser inferior a duas vezes o peso do transformador completo, incluindo a parte ativa e o óleo isolante.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	86 de 97

F = 1,5 x Peso

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	87 de 97

ANEXO F

QUADRO DE DADOS TÉCNICOS E CARACTERÍSTICAS GARANTIDAS

Nome do Fabricante:	
Nº da Licitação:	
Nº da Proposta:	

ITEM	DESCRIÇÃO	CARACTERÍST	TICAS/UNIDADES
1	Tipo ou modelo		
2	Protótipo aprovado pela CHESP? (1)	Sim ()	Não ()
3	Classe de tensão		
4	Potência nominal		
5	Tensões nominais:		
5.1	enrolamento de média tensão		kV
5.2	enrolamento de baixa tensão		kV
6	Nível de isolamento:	Baixa Tensão	Média Tensão
6.1	tensão suportável de impulso atmosférico onda plena (valor de crista)	kV	kV
6.2	tensão suportável de impulso atmosférico onda cortada (valor de crista)	kV	kV
6.3	Tensão suportável à frequência industrial 1 minuto (valor eficaz)	kV	kV
7	Impedância de curto-circuito a 75°C:		
	na base kV		
	na relaçãokV		%
8	Corrente de excitação na derivação principal.		%
9	Perdas:		
9.1	em vazio na derivação principal		W
9.2	totais na derivação principal a 75°C		W
10	Regulação:		
10.1	fator de potência da carga igual a 0,8 a 75°C		%
10.2	fator de potência da carga igual a 1,0 a 75°C		%
11	Rendimento:		
11.1	fator de potência da carga 0,8 - % da potência nominal:	Rendin	nento (%)
11.1	25%	Rendii	nento (70)
	50%		
	75%		
	100%		
11.2	fator de potência da carga 1,0 - % da potência nominal:		
	25%		
	50%		
	75%		
	100 %		
12	Elevação de temperatura na derivação deV:		
12.1	dos enrolamentos (método da variação da resistência)		°C
12.2	do ponto mais quente dos enrolamentos		°C
12.3	do óleo isolante (medida próximo à superfície do óleo)		°C

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	88 de 97

ITEM	DESCRIÇÃO	CARACTERÍSTICAS/UNIDADES
13	Massas:	
13.1 13.2 13.3 13.4	parte ativa tanque e tampa óleo isolante total.	kg kg kg kg
14	Espessura das chapas:	
14.1 14.2 14.3 14.4	Tampa Corpo Fundo radiadores (tubos ou aletas)	mm mm mm mm
15	Material dos enrolamentos	
16	Material das juntas de vedação/norma aplicável	
17	Óleo mineral isolante (designação e tipo)	
17.1	Volume de óleo	I
18 18.1	Apresentação dos seguintes documentos: relação e valores limites das propriedades físicas, químicas e	
18.2 18.3 18.4 18.5 18.6	elétricas do óleo isolante; todos os desenhos solicitados no item 9.2; relatório do ensaio de tensão suportável de impulso atmosférico, com oscilogramas, em uma unidade de cada potência do mesmo tipo ofertado; relatório do ensaio de elevação de temperatura realizado pelos métodos do topo do óleo e da variação da resistência, em uma unidade de cada potência do mesmo tipo ofertado; relatório do ensaio para verificação da suportabilidade a curto- circuito, com oscilogramas, em uma unidade de cada potência do mesmo tipo ofertado; os relatórios de ensaios devem ser preenchidos em papel timbrado do laboratório responsável e conter, no mínimo, as seguintes informações: - condições de ensaios; - normas utilizadas; - características técnicas dos instrumentos e padrões utilizados; - descrição da metodologia empregada na realização dos ensaios; - diagramas elétricos; - resultados dos ensaios.	
19	Informar o método de preparo da chapa, tratamento anticorrosivo, e esquema de pintura interna e externa a serem utilizados.	

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	89 de 97

(1) Se o fabricante tiver protótipo aprovado pela CHESP, não será necessário anexar os relatórios constantes do item 18, caso contrário é obrigatório a apresentação de relatórios de ensaios efetuados em laboratório oficial em transformadores idênticos aos ofertados, sob pena de desclassificação.

Notas:

- 1) O fabricante deve fornecer em sua proposta todas as informações requeridas no Quadro de Dados Técnicos e Características Garantidas.
- 2) Se forem apresentadas propostas alternativas, cada uma delas deve ser submetida com o Quadro de Dados Técnicos e Características Garantidas específico, claramente preenchido, sendo que cada quadro deve ser devidamente marcado para indicar a qual proposta pertence.

Deverá ser feita também uma descrição sucinta dos desvios principais com relação à proposta básica.

- 3) Erro de preenchimento no quadro poderá ser motivo para desclassificação.
- 4) Todas as informações requeridas no quadro devem ser compatíveis com as informações descritas em outras partes da proposta de fornecimento. Em caso de dúvidas, as informações prestadas no quadro prevalecerão sobre as descritas em outras partes da proposta.
- 5) O fabricante deve garantir que a performance e as características dos equipamentos a serem fornecidos estejam em conformidade com as informações aqui prestadas.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	90 de 97

ANEXO G

QUADRO DE DESVIOS TÉCNICOS E EXCEÇÕES

REFERÊNCIA	DESCRIÇÃO SUCINTA DOS DESVIOS E EXCEÇÕES

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	91 de 97

ANEXO H

COTAÇÃO DE ENSAIOS DE TIPO TRANSFORMADORES DE DISTRIBUIÇÃO

Nome do Fabricante):
Nº da Licitação:	
Nº da Proposta:	

ITEM	ENSAIO	PREÇO
01	Elevação de temperatura	
02	Tensão suportável de impulso atmosférico	
03	Suportabilidade a curto-circuito	
04	Medição do fator de dissipação (tg δ) da isolação, (medição do fator de potencia do isolamento)	
05	Nível de ruído audível	
06	Nível de tensão de radiointerferência	
07	Equilíbrio de tensão em transformadores monofásicos	
08	Resistência mecânica dos suportes do transformador	

Nota:

O preenchimento deste quadro somente é obrigatório quando exigido no edital de licitação.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	92 de 97

ANEXO I AVALIAÇÃO DE PERDAS E PENALIDADES

I – 1 Avaliação de Perdas

A análise econômica de transformadores de distribuição deverá ser feita através da seguinte expressão:

ANET = (A.Wo + B.We).Mp + Pr

Sendo:

ANET: valor presente da proposta (R\$);

A: valor presente unitário das perdas em vazio (R\$);

B: valor presente unitário das perdas em carga (R\$);

Wo: valor garantido de perdas em vazio (W);

We: valor garantido de perdas em carga (W);

Mp = 1 (multiplicador de perdas);

Pr: preço ofertado do transformador, incluindo: impostos, embalagem, seguro e transporte (R\$).

Notas:

- 1) Os valores de perdas em vazio e em carga (Wo e We) deverão ser iguais ou inferiores aos valores constantes das Tabelas 10 a 13.
- 2) Os valores de perdas supra mencionados deverão ser garantidos pelo fabricante em sua proposta e constar, obrigatoriamente, do Quadro de Dados Técnicos e Características Garantidas, sob pena de desclassificação da proposta.

Os fatores A e B são dados pelas seguintes expressões:

$$A = (12 . Cd + 8760 . Ce) . FVP/1000$$

$$B = (12 . Cd + 8760 . Ce . Fp) . FVP/1000$$

$$FVP = [(1 + i)^n - 1] / [(i.(1 + i)^n]$$

Sendo:

FVP = fator de valor presente.

Cd: tarifa de demanda na classe de tensão à qual o transformador será conectado (R\$/kWmês).

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	93 de 97

Ce: tarifa de consumo de energia na classe de tensão à qual o transformador será conectado (R\$/kWh).

Cd e Ce: devem ser obtidas no boletim de tarifa da CHESP, na data de abertura da proposta.

 $Fp = (1 - k).Fc^2 + k.Fc$ (Fator de Perdas)

onde:

Fc = 0,70 (fator de carga típico de transformadores de distribuição da CHESP);

k = 0.20;

n = 20 (vida útil estimada do transformador em anos);

i = 12% (taxa efetiva de juros anual).

Os cálculos deverão ser desenvolvidos por intermédio do programa computacional ANET, o qual estabelecerá automaticamente a ordem de classificação dos proponentes, para tanto consultar o respectivo manual de instruções ou o ajuda do próprio programa.

Os valores de perdas em vazio e em carga, garantidos pelo fabricante em sua proposta, deverão constar do CFM.

I – 2 Penalidades Por Desempenho Inferior ao Garantido

Quando a média dos valores de perdas obtidos nos ensaios de recebimento for maior que os valores garantidos pelo fabricante em sua proposta todo o lote deverá ser recusado.

A critério único e exclusivo da CHESP, lotes de transformadores com perdas superiores às garantidas na proposta poderão ser aceitos, desde que o preço ofertado seja reduzido, aplicandose as seguintes condições:

- 1) com base na média das perdas em vazio e em carga encontrada nos ensaios de recebimento fazer nova avaliação de perdas com base na metodologia ANET;
- 2) o preço final a ser pago ao fabricante será o seguinte:

Cp = Pr. - ANETprop . Prp

onde:

onde:

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	94 de 97

Cp = valor final a ser pago ao fabricante (R\$);

Pr = preço ofertado (R\$);

ANETprop = valor presente do transformador, calculado com base nos dados de perdas e preço ofertado, constantes da proposta (R\$);

ANETrec = valor presente do transformador levando em consideração as perdas medidas nos ensaios de recebimento (R\$);

Prp = percentual de redução devido a perdas superiores às garantidas (%).

Nota:

Em hipótese alguma o fornecedor receberá por desempenho acima do garantido em contrato.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	95 de 97

ANEXO J

VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES TRIFÁSICOS CLASSE 15 kV E POTÊNCIA SUPERIOR A 300 kVA

Potência (kVA)	Corrente de excitação máxima (%)	Perdas em vazio máximas (W)	Perdas totais máximas (W)	Tensão de curto-circuito a 75℃ (%)
500	1,6	1170	6800	
750	1,3	1500	9860	5,0
1000	1,2	1800	11000	
1500	1,1	2200	16500	6.0
2000	1,1	2700	21400	6,0
2500	1,0	3100	25800	7,0

VALORES GARANTIDOS DE PERDAS, CORRENTES DE EXCITAÇÃO E TENSÕES DE CURTO-CIRCUITO EM TRANSFORMADORES TRIFÁSICOS CLASSE 36,2 kV E POTÊNCIA SUPERIOR A 300 kVA

Potência (kVA)	Corrente de excitação máxima (%)	Perdas em vazio máximas (W)	Perdas totais máximas (W)	Tensão de curto-circuito a 75℃ (%)
500	1,7	1390	7100	
750	1,4	1760	10060	6.0
1000	1,3	2100	12500	6,0
1500	1,1	2400	17500	
2000	1,0	3050	22600	7,0
2500	1,0	3400	26800	7,0

Nota:

Os transformadores constantes deste anexo deverão ter os seus projetos previamente aprovados pela CHESP.

NTD	013
VERSÃO	2
VIGÊNCIA	01/10/22
PÁGINAS	96 de 97

ANEXO K

ROMANEIO PADRÃO COM NUMERAÇÃO PATRIMONIAL E SERIAL

СТ	Data de Fabricação	Marca	Número de Fases	Quant. de Taps	Variação de Tap (V)	Tap Ligado	Tensão Primária (V)	Tensão Sec (V)	Potência (kVA)	Data da Compra	Volume de óleo (I)	Massa (kg)	Número de Série
													-

Notas:

- 1) Os campos onde constem datas deverão estar no formato DDMMAA (dia, mês e ano).
- 2) O campo número de série pode ser alfanumérico.
- 3) Em todos os campos, exceto número de série, o preenchimento de zeros à esquerda é obrigatório.
- 4) Deve ser enviado conforme modelo e ordenação de dados constantes deste anexo, em formato de planilha eletrônica ou txt